

ODBC Database Interface
for Python

VVVersion 3.1 eerrssiioonn 33..11

mmxxOODDBBCC

Copyright 1997-2000 by IKDS Marc-André Lemburg, Langenfeld
Copyright 2000-2010 by eGenix.com GmbH, Langenfeld

All rights reserved. No part of this work may be reproduced or used in a any form or
by any means without written permission of the publisher.

All product names and logos are trademarks of their respective owners.

The product names "mxBeeBase", "mxCGIPython", "mxCounter", "mxCrypto",
"mxDateTime", "mxHTMLTools", "mxIP", "mxLicenseManager", "mxLog", "mxNumber",
"mxODBC", "mxODBC Connect", "mxODBC Zope DA", "mxObjectStore", "mxProxy",
"mxQueue", "mxStack", "mxTextTools", "mxTidy", "mxTools", "mxUID", "mxURL",
"mxXMLTools", "eGenix Application Server", "PythonHTML", "eGenix" and
"eGenix.com" and corresponding logos are trademarks or registered trademarks of
eGenix.com GmbH, Langenfeld

Printed in Germany.

Contents

Contents

1. Introduction .. 1

2. Installation... 2
2.1 Installation on Windows .. 2

2.1.1 Prerequisites ... 2
2.1.2 Procedure.. 3
2.1.3 Uninstall.. 3

2.2 Installation on Unix using the RPM packages... 4
2.2.1 Prerequisites ... 4
2.2.2 Uninstall.. 5

2.3 Installing from Source.. 5
2.3.1 Prerequisites ... 5
2.3.2 Procedure.. 6
2.3.3 Reinstall .. 7
2.3.4 Uninstall.. 7

3. Access Databases using mxODBC ... 8
3.1 Accessing Databases from Windows ... 9

3.1.1 Looking for Windows ODBC drivers ?... 9
3.2 Accessing Databases from Unix... 10

3.2.1 MS SQL Server .. 10
3.2.2 Oracle ... 11
3.2.3 IBM DB2 ... 11
3.2.4 Looking for Unix ODBC drivers ? .. 11

4. mxODBC Overview..13
4.1 mxODBC and the Python Database API Specification.......................... 13

mxODBC - Python ODBC Database Interface

4.2 mxODBC and the ODBC Specification .. 14
4.3 Supported ODBC Versions .. 15

4.3.1 ODBC Managers ... 15
4.3.2 Changes between ODBC 2.x and 3.x... 15

4.4 Thread Safety & Thread Friendliness .. 15
4.5 Transaction Support... 16
4.6 Stored Procedures ... 17

4.6.1 Input/Output and Output Parameters .. 18
4.6.2 SQL Output Statements in Stored Procedures 18

4.7 Debugging ... 18

5. mxODBC Connection Objects ... 20
5.1.1 Same Interface for all Subpackages.. 20
5.1.2 Connection Type Object.. 20

5.2 Connection Object Constructors ... 21
5.2.1 Default Transaction Settings .. 22

5.3 Connection Object Methods.. 23
5.4 Connection Object Attributes .. 25

5.4.1 Additional Attributes.. 29

6. mxODBC Cursor Objects .. 30
6.1.1 Dependency on the Connection Object..................................... 30
6.1.2 Using multiple Cursor Objects on a single Connection.............. 30
6.1.3 Same Interface for all Subpackages.. 30
6.1.4 Cursor Type Object ... 31

6.2 Cursor Object Constructors... 31
6.3 Cursor Object Methods ... 31

6.3.1 Catalog Methods ... 38
6.4 Cursor Object Attributes.. 57

7. Data Types supported by mxODBC ... 60
7.1 mxODBC Input Binding Modes ... 60
7.2 SQL Type Input Binding ... 61
7.3 Python Type Input Binding... 65

Contents

7.4 Output Conversions .. 67
7.5 Output Type Converter Functions ... 70
7.6 Auto-Conversions.. 71
7.7 Unicode and String Data Encodings... 72
7.8 Additional Comments.. 73

8. Supported DB-API Type Objects and Constructors ..75

9. mxODBC Exceptions and Error Handling ..78
9.1 Exception Classes .. 78
9.2 Database Warnings.. 80
9.3 Exception Value Format ... 81
9.4 Error Handlers ... 82

9.4.1 Examples... 82

10. mxODBC Functions..84
10.1 Subpackage Functions ... 84
10.2 mx.ODBC Functions.. 85

11. mxODBC Globals and Constants ..87
11.1 Subpackage Globals and Constants ... 87
11.2 mx.ODBC Globals and Constants.. 89

12. mx.ODBC Subpackages..90
12.1 Subpackage Notes ... 90

12.1.1 Windows Platform Notes .. 90
12.1.2 Unix Platform Notes.. 90
12.1.3 Compiling from Source ... 90

12.2 mx.ODBC.Windows -- Windows ODBC Driver Manager 91
12.2.1 Connecting to a Database ... 91
12.2.2 Supported Datatypes... 91
12.2.3 Issues with MS SQL Server.. 91
12.2.4 File Data Sources... 93

12.3 mx.ODBC.iODBC -- iODBC Driver Manager....................................... 93
Notes regarding 64-bit Platforms:.. 94

mxODBC - Python ODBC Database Interface

12.4 mx.ODBC.unixODBC -- unixODBC Driver Manager 95
Notes regarding 64-bit Platforms:.. 95

12.5 ODBC Driver Subpackages.. 96
12.5.1 mx.ODBC.Adabas -- SuSE Adabas D.. 96
12.5.2 mx.ODBC.DB2 -- IBM DB2 Universal Database 97
12.5.3 mx.ODBC.DBMaker -- CASEMaker's DBMaker Database 98
12.5.4 mx.ODBC.EasySoft -- EasySoft ODBC-ODBC Bridge................. 98
12.5.5 mx.ODBC.FreeTDS -- FreeTDS ODBC Driver for MS SQL Server
and Sybase ASA ... 98
12.5.6 mx.ODBC.Informix -- Informix SQL Server 99
12.5.7 mx.ODBC.MySQL -- MySQL + MyODBC............................... 100
12.5.8 mx.ODBC.Oracle -- Oracle.. 101
12.5.9 mx.ODBC.PostgreSQL -- PostgreSQL 102
12.5.10 mx.ODBC.SAPDB -- SAP DB.. 102
12.5.11 mx.ODBC.Solid -- Solid Server .. 102
12.5.12 mx.ODBC.SybaseASA -- Sybase Adaptive Server Anywhere103
12.5.13 mx.ODBC.SybaseASE -- Sybase Adaptive Server Enterprise103

13. Hints & Links to other Resources ..105
13.1 Running mxODBC from a CGI script ... 105
13.2 Freezing mxODBC using py2exe ... 105
13.3 More Sources of Information ... 106

14. Examples ..108

15. Testing the Database Connection..110

16. mxODBC Package Structure ...111

17. Support ..113

18. Copyright & License ...114

1. Introduction

1. Introduction

mxODBC has proven to be the most stable and versatile ODBC interface
available for Python. It has been in active use for years and is actively
maintained by eGenix.com to meet the requirements of modern database
applications which our customers have built on top of mxODBC.

This manual will give you an in-depth overview of mxODBC's capabilities
and features. It is written as technical manual, so background in Python and
database programming is needed.

mxODBC tries to hide many of the complicated details of the ODBC
specification from the user, but does provide access to many of the
introspection APIs defined in that standard. If you don't need introspection
for your applications, you can easily make use of mxODBC without any
further knowledge of the underlying ODBC interface.

Technical Overview

The mxODBC package provides a Python Database API 2.0 compliant
interface to databases that are accessible via the ODBC application
programming interface (API). Since ODBC is the de-facto standard for
connecting to databases, this allows connecting Python to most available
databases on the market today.

Accessing the databases can either be done through an ODBC manager,
e.g. the ODBC manager that comes with Windows, iODBC or unixODBC
which are free ODBC managers available for Unix, or directly by linking to
the database ODBC drivers.

The package supports parallel database interfacing meaning that you can
access multiple different databases from within one process, e.g. one
database through the iODBC manager and another through unixODBC.
Included are several preconfigured subpackages for a wide range of
common ODBC drivers and managers to support this.

mxODBC uses the mxDateTime package for handling date/time value,
eliminating the problems you normally face when handling dates before
1.1.1970 and after 2038. This also makes the package Year 2000/2038 safe.

1

http://www.python.org/
http://www.python.org/dev/peps/pep-0249/
http://www.iodbc.org/
http://www.iodbc.org/
http://www.egenix.com/products/python/mxBase/mxDateTime/

mxODBC - Python ODBC Database Interface

2. Installation

The mxODBC database package is distributed as add-on for the
eGenix.com mx Base Distribution (egenix-mx-base).

Please visit the eGenix.com web-site to download the latest versions of
both the eGenix.com mx Base Distribution and the eGenix.com mxODBC
distribution for your platform and Python version.

IMPORTANT NOTE:

Before installing the egenix-mxodbc package, you will have to install the
egenix-mx-base distribution which contains packages needed by
mxODBC.

Even though both distributions use the same installation procedure,
please refer to the egenix-mx-base installation instructions on how to
install that package.

2.1 Installation on Windows

The binaries provided by eGenix.com for use on Windows only include the
mx.ODBC.Windows subpackage of mxODBC. This subpackage interfaces
directly to the Microsoft ODBC Manager, so you can use all available
Windows system tools to configure your ODBC data sources.

2.1.1 Prerequisites

• Please make sure that you have a working installation of the
egenix-mx-base distribution prior to continuing with the
installation of the egenix-mxodbc add-on. You can easily check
this by checking the Windows Software Setup dialog for an entry of
the form "Python x.x eGenix.com mx Base Distribution" or by
running the following at the command prompt:

python –c "import mx.DateTime"

If you get an import error, please visit the eGenix.com web-site and
install the egenix-mx-base package first.

2

http://www.egenix.com/
http://www.egenix.com/

2. Installation

• You will need ODBC drivers for all database you wish to connect
to. Windows comes with a very complete set of such drivers, but if
you can't find the driver you are looking for have a look at section
13 Hints & Links to other Resources.

2.1.2 Procedure

After you have downloaded the Windows installer of the egenix-mxodbc
distribution, double-click on the .exe file to start the installer.

Note:
Depending on your Python installation, you may need admin privileges
on Windows NT, 2000, XP, Vista and 7 to successfully complete the
installation.

The installer will then ask you to accept the license, choose the Python
version and then to start the install process.

If the listbox showing the installed Python versions is empty, it is likely that
you have chosen the wrong Windows installer for your Python version.
Please go back to the eGenix.com web-site and download the correct
version for the installed Python version.

In case you are upgrading to a new mxODBC version, the installer will ask
you whether you want to overwrite existing files. Answer "yes" to this
question. It is safe to allow the installer overwrite files.

The installer will then install all the needed files. Note that it does not setup
any links on the desktop or in the start menu.

2.1.3 Uninstall

The Windows installer will automatically register the installed software with
the standard Windows Software Setup tool.

To uninstall the distribution, run the Windows Software Setup tool and
select the "Python x.x eGenix mxODBC x.x" entry for deinstallation.

This will uninstall all files that can safely be removed from the system. It
will not remove files which were added to the subpackages after
installation.

3

mxODBC - Python ODBC Database Interface

2.2 Installation on Unix using the RPM packages

On Linux you can use the binary RPM packages provided by eGenix.com to
simplify the install process.

These binaries only include the mx.ODBC.iODBC and mx.ODBC.unixODBC
subpackages of mxODBC. These two subpackage interface directly to the
iODBC or unixODBC ODBC managers, one of which is usually preinstalled
on Linux systems.

You can use the available GUI-configuration helpers for these ODBC
managers to configure your ODBC data sources.

2.2.1 Prerequisites

• Please make sure that you have a working installation of the
egenix-mx-base distribution prior to continuing with the
installation of the egenix-mxodbc add-on. You can easily check
this by running the following at the command prompt:

python -c "import mx.DateTime"

If you get an import error, please visit the eGenix.com web-site and
install the egenix-mx-base package first.

• root access to the target machine

• You will need ODBC drivers for all database you wish to connect
to. If you can't find the driver you are looking for have a look at
section 13 Hints & Links to other Resources.

Download the right .rpm package for your platform and Python version to a
temporary directory and execute the standard rpm commands for
installation as root user:

rpm –i egenix-mxodbc-3.0.0-py2.5_1.i386.rpm

The RPM files provided by eGenix.com include the subpackages for the
iODBC and unixODBC ODBC managers.

If the install command complains about unresolved dependencies, it is
likely that you only have one of these two ODBC managers installed. In this
case, install the package by overriding the dependency checks done by the
rpm command:

rpm –i –-nodeps egenix-mxodbc-3.0.0-py2.5_1.i386.rpm

4

http://www.egenix.com/

2. Installation

This will install the package even though only one of the subpackages
mx.ODBC.iODBC or mx.ODBC.unixODBC will actually work. You get an
ImportError for the subpackage which has the unresolved dependencies.

2.2.2 Uninstall

To uninstall the distribution, run the RPM uninstall command:

rpm –e egenix-mxodbc

This will uninstall all files that can safely be removed from the system. It
will not remove files which were added to the subpackages after
installation.

2.3 Installing from Source

This section describes installation of mxODBC from source. This is usually
only necessary on platforms for which eGenix.com does not provide binary
packages or if you have special needs.

The procedure is the same for Windows and Unix.

2.3.1 Prerequisites

• Please make sure that you have a working installation of the
egenix-mx-base distribution prior to continuing with the
installation of the egenix-mxodbc add-on. You can easily check
this by running the following at the command prompt:

python -c "import mx.DateTime"

If you get an import error, please visit the eGenix.com web-site and
install the egenix-mx-base package first.

• Also make sure that you have the Python development files
installed on your system: these are usually located in
/usr/local/lib/pythonX.X/config/ or /usr/lib/pythonX.X/config/. If you
don't, look for a python-devel or similar package for your OS
distribution and install this first.

• You will need ODBC drivers for all database you wish to connect
to. If you can't find the driver you are looking for have a look at
section 13 Hints & Links to other Resources.

5

http://www.egenix.com/

mxODBC - Python ODBC Database Interface

• A C compiler is required.

GNU CC (gcc) will do in most cases on Unix, but it is advised to
use the same C compiler and linker that you have used to compile
Python itself on the target platform. The installation process will
automatically choose the compiler depending on the Python
installation for you.

On Windows, Visual C++ is preferred, but cygwin or mingw32
should also work.

2.3.2 Procedure

To install mxODBC on a non-Linux Unix platform such as Sun Solaris, AIX
or BSD, download the source distribution of the egenix-mxodbc
distribution, e.g. egenix-mxodbc-3.0.0.zip.

Unzip this source archive to a temporary directory and change into the
distribution directory (e.g. egenix-mxodbc-3.0.0/).

Note:
Depending on your Python installation, you may need root privileges on
Unix to successfully complete the installation.

To install the egenix-mxodbc distribution, run the setup.py script with the
Python version you want to install the packages to, e.g.

python setup.py install

This automatically scans the system for available ODBC drivers and
managers and try to build all subpackages for which it finds the right
libraries and header files.

If the automatic setup does not find the ODBC you have installed on the
system, please use your favorite Python editor and edit the file mxODBC.py
according to the instructions given in that file. You should normally only
have to adapt the paths given in the different subpackages setup sections to
your actual ODBC driver install paths.

After successful installation, try to import all the subpackages that were
found. If you get an error like 'unresolved symbol: SQLxxx', try to add a

 define_macros=[..., ('DONT_HAVE_SQLDescribeParam', 1),],

to the setup lines in mxODBC.py and reinstall.

6

2. Installation

2.3.3 Reinstall

You can rerun the above install command as often as you like until the
compile and install process works as configured.

However, if you change a configuration setting, please make sure that the
build/ subdirectory of the distribution directory is being removed prior to
executing the install. Otherwise, the installation process could pick up files
from a previous run and not use the modified settings.

There also is a command to automate this:

python setup.py clean

2.3.4 Uninstall

To uninstall the distribution, run the uninstall setup command:

python setup.py uninstall

This will uninstall all files that can safely be removed from the system. It
will not remove files which were added to the subpackages after
installation.

7

mxODBC - Python ODBC Database Interface

3. Access Databases using mxODBC

mxODBC provides a way of accessing the ODBC API of ODBC managers
and drivers. In order to connect to a database you still need to have suitable
ODBC drivers installed on the machine where you are running the Python
application.

The typical ODBC setup looks like this:

Python Application

↓

mxODBC Package

↓

ODBC Manager (Windows, unixODBC, iODBC)

↓

ODBC Driver

↓

(Network or Local Connection)

↓

Database

The upper blue part in the diagram executes within the process of the
Python application. The green part usually runs in a separate process and
possibly also on a different machine.

As a result of this setup, it is important that you choose the right ODBC
driver type for your application:

• If you are running a 64-bit Python application, you will also have to
have a 64-bit ODBC manager and ODBC driver installed.

• If you are running a 32-bit Python application, you need an 32-bit
ODBC manager and ODBC driver.

8

3. Access Databases using mxODBC

Note that the ODBC manager may be capable of translating 32-bit or 64-bit
function calls to whatever the ODBC driver supports (this is called
thunking). Please check the documentation of your ODBC manager for
details.

3.1 Accessing Databases from Windows

Most database ship with ODBC drivers for Windows, so setting up
database access for Python applications on Windows is fairly straight
forward.

Once you’ve installed the ODBC drivers on the machine you are running
your Python application on, you will need to setup an ODBC Data Source.
This can be done using the ODBC Manager on Windows.

To avoid problems with system permissions, we recommend setting up
System Data Sources, as these are usually accessible by all accounts on a
Windows machine.

Using the mxODBC connection constructor
mx.ODBC.Windwos.DriverConnect() you can then setup a connection to
the database.

3.1.1 Looking for Windows ODBC drivers ?

Microsoft supports a whole range of (desktop) ODBC drivers for various
databases and file formats. These are available under the name "ODBC
Desktop Database Drivers" (search the MS web-site for the exact URL)
[wx1350.exe] and also included in the more up-to-date "Microsoft Data
Access Components" (MDAC) archive [mdac_typ.exe].

Last time we checked, it included ODBC drivers for: Access, dBase, Excel,
Oracle, Paradox, Text (flat file CSV), FoxPro, MS SQL Server.

If you need to connect to databases running on other hosts, please contact
the database vendor or check the SQLSummit list of ODBC drivers.

9

http://www.sqlsummit.com/ODBCVend.HTM

mxODBC - Python ODBC Database Interface

3.2 Accessing Databases from Unix

mxODBC is often used to access databases across a network. A very typical
use case is that of connecting to MS SQL Server, Oracle or DB2 from a
Unix machine.

We have collected some information which may help you in finding the
right solution for this kind of setup. We recommend that you always use an
ODBC manager on Unix to access these driver setups, e.g. iODBC or
unixODBC.

3.2.1 MS SQL Server

Available solutions:

EasySoft's ODBC-ODBC bridge

http://www.easysoft.com/

This was tested with mxODBC and is supported by EasySoft.

It is recommended to use the bridge with unixODBC. Starting with
version 1.4.2 of the bridge, there is full functional Unicode support
available if the target ODBC driver supports this (the latest MS SQL
Server and MS Access drivers do).

MDBTools ODBC driver

http://forums.devshed.com/archive/46/2002/06/4/37357

http://mdbtools.sourceforge.net/

Not tested with mxODBC. Unsupported by eGenix.

ODBC Socket Server

http://odbcsock.sourceforge.net/

Not tested with mxODBC. Unsupported by eGenix.

For a version of the Socket Server with transaction support, you can try:

UniverSQL:

http://www.sidespace.com/products/universql/

10

3. Access Databases using mxODBC

Not tested with mxODBC. Unsupported by eGenix.

DataDirect and Merant also provide driver sets for connecting to MS SQL
Server from Unix.

3.2.2 Oracle

Available solutions:

EasySoft's Oracle Driver for Unix

http://www.easysoft.com/

This was tested with mxODBC and is supported by EasySoft.

DataDirect and Merant also provide driver sets for connecting to Oracle
from Unix.

3.2.3 IBM DB2

Linux client to Unix/Windows server

IBM DB2 for Linux ships with ODBC drivers for DB2. These can also be
used to connect to DB2 database over a network.

Linux client to iSeries / AS/400 server

IBM has a Linux ODBC driver which makes this setup possible. See their
web-page on the "iSeries ODBC driver for Linux" for details:

http://www-1.ibm.com/servers/eserver/iseries/linux/odbc/

3.2.4 Looking for Unix ODBC drivers ?

If you want to run mxODBC in a Unix environment and your database
doesn't provide an Unix ODBC driver, you can try the drivers sold by Data-
Direct (formerly Intersolv/Merant). They have 30-day evaluation packages
available.

Another source for commercial ODBC drivers is OpenLink. To see if they
support your client/server setup check this matrix. They are giving away 2-
client/10-connect licenses for free.

11

http://www-1.ibm.com/servers/eserver/iseries/linux/odbc/
http://www.datadirect-technologies.com/odbc/odbc.asp
http://www.datadirect-technologies.com/odbc/odbc.asp
http://www.openlinksw.com/
http://oplweb.openlinksw.com/product/webmatrix.asp

mxODBC - Python ODBC Database Interface

For a fairly large list of sources for ODBC drivers have a look on the
SQLSummit list of ODBC drivers.

If you would like to connect to a database for which you don't have a Unix
ODBC driver, you can also try the ODBC-ODBC bridge from EasySoft
which redirects the queries to e.g. the NT ODBC driver for the database.

Alternatively, you can have a look at our mxODBC Connect product which
just needs an ODBC driver on the server side and provides a cross-platform
networked interface to this for the client side. This makes it very easy to
connect to e.g. a Windows-based database from Unix, BSD or Mac OS X.

12

http://www.sqlsummit.com/ODBCVend.HTM
http://www.easysoft.com/
http://www.egenix.com/products/python/mxODBCConnect/

4. mxODBC Overview

4. mxODBC Overview

mxODBC is structured as Python package to support interfaces to many
different ODBC managers and drivers. Each of these interfaces is accessible
as subpackage of the mx.ODBC Python package, e.g. on Windows you'd
normally use the mx.ODBC.Windows subpackage to access the Windows
ODBC manager; on Unix this would typically be either the mx.ODBC.iODBC
or mx.ODBC.unixODBC package depending on which of these two standard
Unix ODBC managers you have installed.

Each of these subpackages behaves as if it were a separate Python database
interface, so you actually get more than just one interface with mxODBC.
The advantage over other Python database interfaces is that all subpackages
share the same logic and programming interfaces, so you don't have to
change your application logic when moving from one subpackage to
another. This enables programs to run (more or less) unchanged on
Windows and Unix, for example.

As you may know, there is a standard for Python database interfaces, the
Python Database API Specification or Python DB-API for short. Marc-André
Lemburg, the author of the mxODBC package, is the editor of this
specification, so great care is taken to make mxODBC as compatible to the
DB-API as possible. Some things cannot easily be mapped onto ODBC, so
there are a few deviations from the standard. Section 4.1 mxODBC and the
Python Database API Specification explains these in more detail.

4.1 mxODBC and the Python Database API Specification

The mxODBC package tries to adhere to the Python DB API Version 2.0 in
most details. Many features of the old Python DB API 1.0 are still supported
to maintain backwards compatibility and simplify porting old Python
applications to the new interface.

Here is a list of differences between mxODBC and the DB API 2.0
specifications:

• cursor.description doesn't return display_size and internal_size;
both values are always None since this information is not available
through ODBC interfaces and the values are not commonly used
in applications.

13

http://www.python.org/dev/peps/pep-0249/
http://www.python.org/dev/peps/pep-0248/

mxODBC - Python ODBC Database Interface

• cursor.callproc() is only implemented for input parameters for
reasons explained in section 4.6 Stored Procedures.

• db.setinputsizes() and db.setoutputsizes() are dummy
functions; this is allowed by DB API 2.0.

• The type objects / constructors (formerly found in the dbi module
defined by DB API 1.0) are only needed if you want to write
database independent code.

• The connection constructor is available under three different
names: ODBC() (DB API 1.0), connect() (DB API 2.0) and
Connect() (mxODBC specific). See the next section for details on
the used parameters. mxODBC also defines a DriverConnect()
constructor which is available for ODBC managers and some
ODBC drivers. If you can, please use the DriverConnect() API
since this provides more flexibility in configuring the connection.

mxODBC extends the DB-API specification in a number of ways. If you
want to stay compatible to other Python DB-API compliant interface, you
should only use those interfaces which are mentioned in the Python DB-API
specification documents.

4.2 mxODBC and the ODBC Specification

Since ODBC is a widely supported standard for accessing databases, it
should in general be possible to use the package with any ODBC version
2.0 - 3.52 compliant ODBC database driver/manager. mxODBC prefers
ODBC 3.x over 2.x in case the driver/manager supports both versions of
the standard.

The ODBC API is very rich in terms of accessing information about what is
stored in the database. mxODBC makes most of these APIs available as
additional connection and cursor methods and can be put to good use for
database and schema introspection.

Since many of the parameters and names of the ODBC function names
were mapped directly to Python method names (by dropping the SQL
prefix and converting them to lower-case), we have not copied the
complete ODBC documentation to this page.

You can browse and download the MS ODBC reference from the Microsoft
MDAC web-site.

14

http://www.python.org/dev/peps/pep-0249/
http://msdn2.microsoft.com/en-us/data/aa937703.aspx
http://msdn2.microsoft.com/en-us/data/aa937703.aspx

4. mxODBC Overview

4.3 Supported ODBC Versions

mxODBC can be configured to use ODBC 2.x or 3.x interfaces by setting
the ODBCVER symbol in mxODBC.h to the needed value. It uses the value
provided by the ODBC driver header files per default which usually is the
latest ODBC standard version available.

Most ODBC drivers today support ODBC 3.x and thus mxODBC will try to
use APIs from this version if available.

4.3.1 ODBC Managers

All supported ODBC managers (MS ODBC Manager, iODBC and
unixODBC) provide the ODBC 3.x interfaces and map these to ODBC 2.x
interfaces in case the driver for the database does not comply to ODBC 3.x.

However, some drivers only pretend to be ODBC 3.x compliant and raise
"Driver not capable" exceptions when using certain ODBC 3.x APIs or
features. If you run into such an situation, please contact support for help.
The only way to solve this problem currently lies in adding workarounds
which are specific to a database.

To find out which ODBC version is being supported by the ODBC driver,
you can use connection.getinfo(SQL.DRIVER_ODBC_VER)[1]. This will
return a string giving you the version number, e.g. '03.51.00'.

4.3.2 Changes between ODBC 2.x and 3.x

Please also note that there are some changes in behavior between ODBC
2.x and 3.x compatible drivers/managers which means that certain option
settings differ slightly between the two versions and that special cases are
treated differently for ODBC 3.x than for ODBC 2.x. See the ODBC
Documentation for details.

4.4 Thread Safety & Thread Friendliness

mxODBC itself is written in a thread safe way. There are no module globals
being used and thus no locking is necessary.

15

mailto:support@egenix.com
http://msdn.microsoft.com/library/en-us/odbc/htm/dasdkodbcoverview.asp
http://msdn.microsoft.com/library/en-us/odbc/htm/dasdkodbcoverview.asp

mxODBC - Python ODBC Database Interface

Many of the underlying ODBC SQL function calls are wrapped by macros
unlocking the global Python interpreter lock before doing the call and
regaining that lock directly afterwards. The most prominent of those are the
connection APIs and the execute and fetch APIs.

In general when using a separate database connection for each thread, you
shouldn't run into threading problems. If you do, it is more likely that the
ODBC driver is not 100% thread safe and thus not 100% ODBC
compatible. Note that having threads share cursors is not a good idea:
there are many very strange transaction related problems you can then run
into.

Unlocking the interpreter lock during long SQL function calls gives your
application more responsiveness. This is especially important for GUI based
applications, since no other Python thread can run when the global lock is
acquired by one thread.

Note:
mxODBC will only support threading if you have built Python itself with
thread support enabled. Python for Windows and most recent Python
versions for Unix have this enabled per default. Try: python -c "import
thread" to find out. If you get an exception, thread support is not
available.

4.5 Transaction Support

ODBC uses auto-commit on new connections per default. This means that
all SQL statement executes will directly have an effect on the underlying
database even in those cases where you would really back out of a certain
modification, e.g. due to an unexpected error in your program.

mxODBC turns off auto-commit whenever it creates a new connection,
ie. it runs the connection in manual commit mode -- unless the
connection constructor flag clear_auto_commit is set to 0 or the
database does not provide transactions.

Using a connection in manual commit mode means that all your commands
are grouped in transactions: only the connection will see the changes it has
made to the data in the database until an explicit connection.commit() is
issued. The commit informs the database to write all changes done during
the last transaction into the global data storage making it visible to all other
users. A connection.rollback() on the other hand, tells the database to
discard all modifications processed in the last transaction.

16

4. mxODBC Overview

New transactions are started in the following cases:

• creation of a new connection,

• on return from a .commit() and

• after having issued a .rollback().

Unless you perform an explicit connection.commit() prior to deleting or
closing the connection, mxODBC will try to issue an implicit rollback on
that connection before actually closing it.

Errors are only reported on case you use the connection.close()
method. Implicit closing of the connection through Python's garbage
collection will ignore any errors occurring during rollback.

Data sources that do not support transactions, such as flat file databases
(e.g. Excel or CSV files on Windows), cause calls to .rollback() to fail
with an NotSupportedError. mxODBC will not turn off auto-commit
behavior for these sources. The setting of the connection constructor flag
clear_auto_commit has no effect in this case.

Some databases for which mxODBC provides special subpackages such as
MySQL don't have transaction support, since the database does not provide
transaction support. For these subpackages, the .rollback() connection
method is not available at all (i.e. calling it produces an AttributeError)
and the clear_auto_commit flag on connection constructors defaults to 0.

4.6 Stored Procedures

There are two ways to call a stored procedure in mxODBC, directly using
the .callproc() cursor method or indirectly using the following standard
ODBC syntax for calling stored procedures:

The ODBC syntax for calling a stored procedure is as follows:

{call procedure-name [([parameter][,[parameter]]...)]}

Using the above syntax, you can call stored procedures through one of the
.execute*() calls, e.g.

cursor.execute("{call myprocedure(?,?)}", (1,2))

will call the stored procedure myprocedure with the input parameters 1,
2.

17

mxODBC - Python ODBC Database Interface

After calling .callproc() or .execute*(), you can then access output
from the stored procedure as one or more result sets using the standard
.fetch*() cursor methods. If the stored procedure has generate multiple
result sets, skipping to the next result set is possible by calling the
.nextset() cursor method.

4.6.1 Input/Output and Output Parameters

mxODBC does not support input/output or output parameters in stored
procedures. The reason for this is that the interface for passing back data
from the stored procedure requires knowledge of the data size before
calling the procedure which is often impossible to deduce (e.g. for string
data).

Passing back such data in form of one or more result sets gives you a much
better alternative which also let's you implement variable length output
parameter lists and special output value conversions.

4.6.2 SQL Output Statements in Stored Procedures

You should not use any output SQL statements such as "PRINT" in the
stored procedures, since this will cause at least some ODBC drivers
(notably the MS SQL Server one) to turn the output into an SQL error which
causes the execution to fail.

On the other hand, these error messages can be useful to pass along error
conditions to the Python program, since the error message string will be
the output of the "PRINT" statement.

4.7 Debugging

To simplify debugging the mxODBC package can generate debugging
output in several important places. The feature is only enabled if the
module is compiled with debug support and output is only generated if
Python is run in debugging mode (use the Python interpreter flag: python
–d script.py).

The resulting log file is named mxODBC.log. It will be created in the
current working directory; messages are always appended to the file so no

18

4. mxODBC Overview

trace is lost until you explicitly erase the log file. If the log file can not be
opened, the module will use stderr for reporting.

To have the package compiled using debug support, prepend the distutils
command mx_autoconf --enable-debugging to the build or install
command. This will then enable the define and compile a debugging
version of the code, e.g.

cd egenix-mx-commcercial-X.X.X
python setup.py mx_autoconf --enable-debugging install

installs a debugging enabled version of mxODBC on both Unix and
Windows (provided you have a compiler installed).

Note that the debug version of the module is almost as fast as the regular
build, so you might as well leave debugging support enabled.

19

mxODBC - Python ODBC Database Interface

5. mxODBC Connection Objects

Connection objects provide the communication link between your Python
application and the database. They are also the scope of transactions you
perform. Each connection can be setup to your specific needs, multiple
connections may be opened at the same time.

5.1.1 Same Interface for all Subpackages

Even though mxODBC provides interfaces to many different ODBC
backends using different subpackages, each of these subpackages use the
same names and signatures, thereby making applications very portable
between ODBC backends.

As an example, say if you are using the mx.ODBC.Windows subpackage,
then the constructor to call would be
mx.ODBC.Windows.DriverConnect(). When porting the application to
Unix you'd use the mx.ODBC.iODBC subpackage and the constructor then
becomes mx.ODBC.iODBC.DriverConnect().

Please note that some ODBC backends do not support all available ODBC
features. As a result, not all constructors and methods may be available.
The best way to work around this caveat is to always rely on ODBC
managers to achieve the best portability and also to simplify the
configuration of the application's database needs.

5.1.2 Connection Type Object

mxODBC uses a dedicated object type for connections. Each mxODBC
subpackage defines its own object type, but all share the same name:
ConnectionType.

20

5. mxODBC Connection Objects

5.2 Connection Object Constructors

Connect(dsn, user='', password='', clear_auto_commit=1,
errorhandler=None)

This constructor returns a connection object for the given data source. It
accepts keyword arguments. dsn indicates the data source to be used,
user and password are optional and used for database login.

errorhandler may be given to set the error handler for the Connection
object prior to actually connecting to the database. This is useful to
mask e.g. certain warnings which can occur at connection time. The
errorhandler can be changed after the connection has been
established by assigning to the .errorhandler attribute of the
Connection object. The default error handler raises exceptions for all
database warnings and errors.

If you connect to the database through an ODBC manager, you should
use the DriverConnect() API since this allows passing more
configuration information to the manager and thus provides more
flexibility over this interface.

See the following section Default Transaction Settings for details on
clear_auto_commit.

connect(dsn, user='', password='', clear_auto_commit=1,
errorhandler=None)

Is just an alias for Connect() needed for Python DB API 2.0
compliance.

DriverConnect(DSN_string, clear_auto_commit=1, errorhandler=None)

This constructor returns a connection object for the given data source
which is managed by an ODBC Driver Manager (e.g. the Windows
ODBC Manager or iODBC). It allows passing more information to the
database than the standard Connect() constructor.

errorhandler may be given to set the error handler for the Connection
object prior to actually connecting to the database. This is useful to
mask e.g. certain warnings which can occur at connection time. The
errorhandler can be changed after the connection has been
established by assigning to the .errorhandler attribute of the
Connection object. The default error handler raises exceptions for all
database warnings and errors.

Please refer to the documentation of your ODBC manager and the
database for the exact syntax of the DSN_string. It typically has this
formatting: 'DSN=datasource_name;UID=userid;PWD=password'
(case can be important and more entries may be needed to successfully
connect to the data source).

21

mxODBC - Python ODBC Database Interface

See the following section Default Transaction Settings for details on
clear_auto_commit.

The DriverConnect() API is only available if the interface was
compiled with the compile time switch HAVE_SQLDriverConnect
defined. This is the default for ODBC managers such as the one on
Windows and iODBC/unixODBC on Unix platforms. See the
subpackages section for details.

ODBC(dsn, user='', password='', clear_auto_commit=1,
errorhandler=None)

Is just an alias for Connect() needed for Python DB API 1.0
compliance.

5.2.1 Default Transaction Settings

ODBC usually defaults to auto-commit, meaning that all actions on the
connection are directly applied to the database. Since this can be
dangerous, mxODBC defaults to turning auto-commit off at connection
initiation time provided the database supports transactions.

The value of the clear_auto_commit connection parameter overrides this
default behavior. Passing a 0 as value disables the clearing of the auto-
commit flag and lets the connection use the database's default commit
behavior. Please see the database documentation for details on its default
transaction setting.

Note that a compile time switch (DONT_CLEAR_AUTOCOMMIT) allows
altering the default value for clear_auto_commit.

Use the connection method connection.setconnectoption(
SQL.AUTOCOMMIT, SQL.AUTOCOMMIT_ON|OFF|DEFAULT) to adjust the
connection's behavior to your needs after the connection has been
established, but before you have opened a database cursor.

With auto-commit turned on, transactions are effectively disabled. The
rollback() method will raise a NotSupportedError when used on such
a connection.

If you get an exception during connect telling you that the driver is not
capable or does not support transactions, e.g.
mxODBC.NotSupportedError: ('S1C00', 84, '[Microsoft][ODBC
Excel Driver]Driver not capable ', 4226), try to connect with
clear_auto_commit set to 0. mxODBC will then keep auto-commit
switched on and the connection will operate in auto-commit mode.

22

5. mxODBC Connection Objects

All connection constructors implicitly start a new transaction when
connecting to a database in transactional mode.

When connecting to a database with transaction support, you should
explicitly do a .rollback() or .commit() prior to closing the connection.
mxODBC does an automatic rollback of the transaction when the
connection is closed if the driver supports transactions.

5.3 Connection Object Methods

.close()

Close the connection now (rather than automatically at garbage
collection time). The connection will be unusable from this point on; an
Error (or subclass) exception will be raised if any operation is
attempted with the connection. The same applies to all cursor objects
trying to use the connection.

.commit()

Commit any pending changes and implicitly start a new transaction.

For connections which do not provide transaction support or operate in
auto-commit mode, this method does nothing.

.cursor([name])

Constructs a new Cursor Object with the given name using the
connection.

If no name is given, the ODBC driver will determine a unique name on
its own. You can query this name with cursor.getcursorname() (see
the Cursor Object section 6).

.getconnectoption(option)

Same as above, except that the corresponding ODBC function is
SQLGetConnectOption().

option must be an integer. Suitable option values are available through
the SQL object (see the Constants section 10 for details).

The method returns the data as 32-bit integer. It is up to the user to
decode the integer value using the SQL defines available through the
SQL constant.

.getinfo(info_id)

Interface to the corresponding ODBC function SQLGetInfo().

23

mxODBC - Python ODBC Database Interface

The info_id must be an integer. Suitable values are available through
the SQL object (see the Constants section 10 for details).

The method returns a tuple (integer, string) giving an integer decoding
(in native integer byte order) of the first bytes of the API's result as well
as the raw buffer data as string. It is up to the caller to decode the data
(e.g. using the struct module).

This API gives you a very wide range of information about the
underlying database and its capabilities. See the ODBC documentation
for more information.

.nativesql(command)

This method returns the command as it would have been modified by the
driver to pass to the database engine. It is a direct interface to the
ODBC API SQLNativeSql().

In many cases it simply returns the command string unchanged. Some
drivers unescape ODBC escape sequences in the command string.
Syntax checking is usually not applied by this method and errors are
only raised in case of command string truncation.

Not all mxODBC subpackages support this API.

.rollback()

In case the database connection has transactions enabled, this method
causes the database to roll back any changes to the start of the current
transaction.

Closing a connection without committing the changes first will cause an
implicit rollback to be performed.

This method is only available if the database subpackage was compiled
with transaction support. For ODBC manager subpackages it may raise
a NotSupportedError in case the connection does not support
transactions.

.setconnectoption(option, value)

This method lets you set some ODBC integer options to new values,
e.g. to set the transaction isolation level or to turn on auto-commit.

option must be an integer. Suitable option values are available through
the SQL object, e.g. SQL.ATTR_AUTOCOMMIT corresponds to the SQL
option SQL_ATTR_AUTOCOMMIT in C (see the Constants section 10 for
details).

The method is a direct interface to the ODBC SQLSetConnectOption()
function. Please refer to the ODBC documentation for more
information.

24

http://msdn2.microsoft.com/en-us/library/ms714177.aspx
http://msdn2.microsoft.com/en-us/library/ms714177.aspx

5. mxODBC Connection Objects

Note that while the API function also supports setting character fields,
the method currently does not know how to handle these.

Note for ADABAS/SAP DB/MAX DB users:
Adabas, SAP DB and MAX DB can emulate several different SQL
dialects. They have introduced an option for this to be set. These are the
values you can use: 1 = ADABAS, 2 = DB2, 3 = ANSI, 4 = ORACLE, 5
= SAPR3. The option code is SQL.CONNECT_OPT_DRVR_START + 2
according to the Adabas documentation. Please consult your driver
documentation for details.

5.4 Connection Object Attributes

.bindmethod

Attribute to query and set the input variable binding method used by the
connection. This can either be BIND_USING_PYTHONTYPE of
BIND_USING_SQLTYPE (see the Constants section 10 for details).

.closed

Read-only attribute that is true in case the connection is closed. Any
action on a closed connection will result in a ProgrammingError to be
raised. This variable can be used to conveniently test for this state.

.converter

Read/write attribute that sets the converter callback default for all newly
created cursors using the connection. It is None per default (meaning to
use the standard conversion mechanism). See the Supported Data Types
section for details.

.datetimeformat

Use this instance variable to set the default output format for
date/time/timestamp columns of all cursors created using this
connection object.

Possible values are (see the Constants section 10 for details):

DATETIME_DATETIMEFORMAT (default)

DateTime and DateTimeDelta instances.

PYDATETIME_DATETIMEFORMAT

datetime.date, datetime.time, datetime.datetime instances. Only
available using Python 2.4 and later.

25

mxODBC - Python ODBC Database Interface

TIMEVALUE_DATETIMEFORMAT

Ticks (number of seconds since the epoch) and tocks (number of
seconds since midnight).

TUPLE_DATETIMEFORMAT

Python tuples as defined in the Supported Data Types section.

STRING_DATETIMEFORMAT

Python strings. The format used depends on the internal settings
of the database. See your database's manuals for the exact format
and ways to change it.

We strongly suggest always using the DateTime/DateTimeDelta
instances. Note that changing the values of this attribute will not change
the date/time format for existing cursors using this connection.

.dbms_name

String identifying the database manager system.

.dbms_version

String identifying the database manager system version.

.decimalformat

Use this instance variable to set the default output format for decimal
and numeric columns of all cursors created using this connection
object.

Possible values are (see the Constants section 10 for details):

FLOAT_DECIMALFORMAT (default)

Values are returned as Python floats.

DECIMAL_DECIMALFORMAT

Values are returned as Python decimal.Decimal instances. Only
available using Python 2.4 and later.

Note that changing the values of this attribute will not change the
decimal format for existing cursors using this connection.

.driver_name

String identifying the ODBC driver.

.driver_version

String identifying the ODBC driver version.

26

5. mxODBC Connection Objects

.encoding

Read/write attribute which defines the encoding to use for converting
Unicode to 8-bit strings and vice-versa. If set to None (default), Python's
default encoding will be used, otherwise it has to be a string providing a
valid encoding name, e.g. 'latin-1' or 'utf-8'.

.errorhandler

Read/write attribute which defines the error handler function to use. If
set to None, the default handling is used, i.e. errors and warnings all
raise an exception and get appended to the .messages list.

An error handler must be a callable object taking the arguments
(connection, cursor, errorclass, errorvalue) where
connection is a reference to the connection, cursor a reference to the
cursor (or None in case the error does not apply to a cursor),
errorclass is an error class which to instantiate using errorvalue as
construction argument.

See the Error Handlers section 9 for details.

.license

String with the license information of the installed mxODBC license.

.messages

This is a Python list object to which mxODBC appends tuples
(exception class, exception value) for all messages which the
interfaces receives from the underlying ODBC driver or manager for this
connection.

The list is cleared automatically by all connection methods calls (prior to
executing the call) except for the info and connection option methods
calls to avoid excessive memory usage and can also be cleared by
executing del connection.messages[:].

All error and warning messages generated by the ODBC driver are
placed into this list, so checking the list allows you to verify correct
operation of the method calls.

.stringformat

Use this attribute to set or query the default input and output handling
for string columns of all cursors created using this connection object.
Data conversion on input is dependent on the input binding type.

Possible values are (see the Constants section 10 for details):

EIGHTBIT_STRINGFORMAT (default)

This format tells mxODBC to convert all data passed to and read
from the ODBC driver to 8-bit strings.

27

mxODBC - Python ODBC Database Interface

On input, Python 8-bit strings are passed to the ODBC driver as-
is. Unicode objects are converted to Python 8-bit strings
assuming the connection's encoding setting (see the .encoding
attribute of connection objects) prior to passing them to the
ODBC driver.

On output, all string columns are fetched as strings and passed
back as Python 8-bit string objects. Unicode data from the
database is converted to Python 8-bit string objects assuming the
connection's encoding setting (see the .encoding attribute of
connection objects).

This setting emulates the behavior of previous mxODBC versions
and is the default.

MIXED_STRINGFORMAT

This format lets the ODBC driver decide which string format to
use for the communication, providing the most efficient way of
communicating with the driver.

Input and output conversion is dependent on the data format the
ODBC driver expects or returns for a given column. If the driver
returns a string, a Python string is created; if it returns Unicode
data, a Python Unicode object is used.

UNICODE_STRINGFORMAT

This format can be used to emulate Unicode support with a
database backend that doesn't have a native Unicode data type or
where the ODBC driver cannot handle Unicode data.

On input, Python strings are passed to the ODBC driver as-is.
Unicode objects are converted to 8-bit strings using the
connection's encoding setting (see the .encoding attribute of
connection objects) and then passed to the ODBC driver.

On output, string data is converted to Python Unicode objects,
based on the same conversion technique.

Use this setting if you plan to use Unicode objects with non-
Unicode aware databases (e.g. by setting the encoding to UTF-8 -
- be careful though: multibyte character encodings usually take
up more space and are not necessarily compatible with the
database's string functions).

NATIVE_UNICODE_STRINGFORMAT

This format should be used for databases and applications that
support native Unicode data communication.

String columns are converted to Python Unicode objects
assuming the connection's encoding setting (see the .encoding

28

5. mxODBC Connection Objects

attribute of connection objects) and then passed as Unicode to
the ODBC driver.

On output, string data is always fetched as Unicode data from the
ODBC driver and returned using Python Unicode objects.

Note that even though mxODBC may report that Unicode support is
enabled (default in Python 2.0 and later; HAVE_UNICODE_SUPPORT is set
to 1), the ODBC driver may still reject Unicode data. In this case, an
InternalError of type 'S1003' is raised whenever trying to read data
from the database in this .stringformat mode.

You can use the included mx/ODBC/Misc/test.py script to find out
whether the database backend support Unicode or not.

Binary and other plain data columns will still use 8-bit strings for
interfacing, since storing this data in Unicode objects would cause
trouble. mxODBC will eventually use buffer or some form of binary
objects to store binary data in some future version, e.g. the new bytes
type which will be introduced with Python 3.0.

This variable only has an effect if mxODBC was compiled with Unicode
support (default for Python 2.0 and later). If not, mxODBC will always
work in EIGHTBIT_STRINGFORMAT mode.

5.4.1 Additional Attributes

In addition to the above attributes, all exception objects used by the
connection's subpackage are also exposed on the connection objects as
attributes, e.g. connection.Error gives the Error exception of the
subpackage which was used to create the connection object.

See the Exceptions and Error Handling section 9 for details and names of
these error attributes.

29

mxODBC - Python ODBC Database Interface

6. mxODBC Cursor Objects

These objects represent a database cursor: an object which is used to
manage the context of a database query operation.

This includes preparing and parsing the query or command to be executed
on the connection, executing the query or command one or multiple times
and providing a pointer into the result set or sets generated by queries.

6.1.1 Dependency on the Connection Object

Cursors are created through a database connection. As a result, cursor
objects are only usable as long as the connection object exists and the
associated database connection is open and working.

All operations of a cursor are done through the connection that was used to
create it. The scope and default settings of a cursor are defined by the
connection. Once created, you can change various settings of the cursor,
e.g. the cursor.datetimeformat. Such changes do not affect the
connection or any other cursor objects created on the connection.

Using cursors on a closed connection will result in a ProgrammingError to
be raised.

6.1.2 Using multiple Cursor Objects on a single Connection

Depending on the capabilities of the database and the used ODBC driver,
you can have multiple cursors open on a single connection and execute
queries and commands on each at will. This makes it possible to e.g.
prepare and then cache often used commands.

6.1.3 Same Interface for all Subpackages

Cursor objects are supported by all subpackages included in mxODBC.

The extent to which the functionality and number of methods is supported
may differ from subpackage to subpackage, so you have to verify the
functionality of the used methods (esp. the catalog methods) for each
subpackage and database that you intend to use.

30

6. mxODBC Cursor Objects

6.1.4 Cursor Type Object

mxODBC uses a dedicated object type for cursors.

Each subpackage defines its own object type, but all share the same name:
CursorType.

6.2 Cursor Object Constructors

Cursor objects are created using the connection method
connection.cursor(). Please see 5.3 Connection Object Methods for
details.

6.3 Cursor Object Methods

The following cursor methods are defined in the DB API:

.callproc(procname[, parameters])

Call a stored database procedure with the given name. The sequence of
parameters must contain one entry for each argument that the
procedure expects. The result of the call is returned as modified copy of
the input sequence. Input parameters are left untouched, output and
input/output parameters replaced with possibly new values.

The procedure may also provide a result set as output. This must then
be made available through the standard fetch*() methods.

This method is only implemented for input parameters in mxODBC for
reasons explained in 4.6 Stored Procedures. Future versions of mxODBC
may also support in/out and output parameters.

.close()

Close the cursor now (rather than automatically at garbage collection
time).

The cursor will be unusable from this point forward; an Error (or
subclass) exception will be raised if any operation is attempted with the
cursor.

.execute(sqlcmd[, parameters, direct=-1])

Prepare and execute a database operation (query or command).

31

mxODBC - Python ODBC Database Interface

Parameters must be provided as sequence and will be bound to
variables found in the sqlcmd string on a positional basis.

Variables in the sqlcmd string are specified using the ODBC variable
placeholder '?', e.g. 'SELECT name,id FROM table WHERE amount
> ? AND amount < ?', and get bound in the order they appear in the
SQL statement sqlcmd from left to right.

A reference to the sqlcmd string will be retained by the cursor. If the
same sqlcmd string object is passed in again, the cursor will optimize its
behavior by reusing the previously prepared statement. This is most
effective for algorithms where the same sqlcmd is used, but different
parameters are bound to it, e.g. in loops iterating over input data items.

Use .executemany()if you want to apply the sqlcmd to a sequence of
parameters in one call, e.g. to insert multiple rows in a single call.

sqlcmd may be a Unicode object in case the ODBC driver and/or
database support this.

direct specifies whether to use direct, unprepared execution or not
(see .executedirect() for details). It defaults to -1, meaning that
direct execution is used if no parameters are given, non-direct
otherwise.

Return values are not defined.

.executedirect(sqlcmd[,parameters])

Works just like .execute(), except that no prepare step is issued and
the sqlcmd is not cached. This can result in better performance with
some ODBC driver setups, but also implies that Python type binding
mode is used to bind the parameters. All SQL command parsing is then
pushed from the client side to the server side.

sqlcmd may be a Unicode object in case the ODBC driver and/or
database support this.

Return values are not defined.

.executemany(sqlcmd,batch[,direct])

Prepare a database operation (query or command) and then execute it
against all parameter sequences found in the sequence batch.

The same comments as for .execute() also apply accordingly to this
method.

If the optional integer direct is given and true, mxODBC will not cache
the sqlcmd, but submit it for one-time execution to the database. This
can result in better performance with some ODBC driver setups, but
also implies that Python type binding mode is used to bind the
parameters.

32

6. mxODBC Cursor Objects

sqlcmd may be a Unicode object in case the ODBC driver and/or
database support this.

Return values are not defined.

.fetchall()

Fetch all (remaining) rows of a query result, returning them as a
sequence of sequences (e.g. a list of tuples).

An Error (or subclass) exception is raised if the previous call to
.execute*() did not produce any result set or no call was issued yet.

.fetchmany([size=cursor.arraysize])

Fetch the next set of rows of a query result, returning a sequence of
sequences (e.g. a list of tuples). An empty sequence is returned when
no more rows are available.

The number of rows to fetch per call is specified by the parameter. If it
is not given, the cursor's .arraysize determines the number of rows to
be fetched. The method will try to fetch as many rows as indicated by
the size parameter. If this is not possible due to the specified number of
rows not being available, fewer rows may be returned.

An Error (or subclass) exception is raised if the previous call to
.execute*() did not produce any result set or no call was issued yet.

.fetchone()

Fetch the next row of a query result set, returning a single sequence, or
None when no more data is available.

An Error (or subclass) exception is raised if the previous call to
.execute*() did not produce any result set or no call was issued yet.

mxODBC will move the associated database cursor forward by one row
only.

.flush()

Frees any pending result set used by the cursor. If you only fetch some
of the rows of large result sets you can optimize memory usage by
calling this method.

Note that .execute*() and all the catalog methods do an implicit
.flush() prior to executing a new query.

If you plan to write cross database applications, use these methods with
care, since at least some of the databases don't support certain APIs or
return misleading results.

Warning:
Be sure to check the correct performance of the methods and executes.

33

mxODBC - Python ODBC Database Interface

We don't want to see you losing your data due to some error we made, or
the fact that the ODBC driver of your database is buggy or not fully
ODBC-compliant.

.setconverter(converter)

This method sets the converter function to use for subsequent fetches.
Passing None as converter will reset the converter mechanism to its
default setting. See the Supported Data Types section 7 for details on
how user-defined converters work.

.getcursorname()

Returns the current cursor name associated with the cursor object. This
may either be the name given to the cursor at creation time or a name
generated by the ODBC driver for it to use.

.getcursoroption(option)

Returns the given cursor option. This method interfaces directly to the
ODBC function SQLGetCursorOption().

option must be an integer. Suitable option values are available through
the SQL object.

Possible values are:

Option Comment

SQL.ATTR_QUERY_TIMEOUT Returns the query timeout in seconds used for the
cursor.

Note that not all ODBC drivers support this option.

SQL.ATTR_ASYNC_ENABLE Check whether asynchronous execution of
commands is enabled.

Possible values:

SQL.ASYNC_ENABLE_OFF (default)

SQL.ASYNC_ENABLE_ON

SQL.ASYNC_ENABLE_DEFAULT

SQL.ATTR_MAX_LENGTH Returns the length limit for fetching column data.

Possible values:

Any positive integer or

34

6. mxODBC Cursor Objects

Option Comment

SQL.MAX_LENGTH_DEFAULT (no limit)

SQL.ATTR_MAX_ROWS Returns the maximum number of rows a .fetchall()
command would return from the result set.

Possible values:

Any positive integer or

SQL.MAX_ROWS_DEFAULT (no limit)

SQL.ATTR_NOSCAN Check whether the ODBC driver will scan the SQL
commands for ODBC escape sequences or not.

Possible values:

SQL.NOSCAN_OFF (default)

SQL.NOSCAN_ON

SQL.NOSCAN_DEFAULT

SQL.ROW_NUMBER Returns the row number of the current row in the
result set or 0 if it cannot be determined.

The method returns the data as 32-bit integer. It is up to the caller to
decode the integer using the SQL defines.

.next()

Works like .fetchone() to make cursors compatible to the iterator
interface (new in Python 2.2). Raises a StopIteration at the end of a
result set.

.nextset()

This method will make the cursor skip to the next available set,
discarding any remaining rows from the current set.

If there are no more sets, the method returns None. Otherwise, it
returns a true value and subsequent calls to the fetch methods will
return rows from the next result set.

An Error (or subclass) exception is raised if the previous call to
.execute*() did not produce any result set or no call was issued yet.

35

mxODBC - Python ODBC Database Interface

.prepare(sqlcmd)

Prepare a database operation (query or command) statement for later
execution and set cursor.command.

To execute a prepared statement, pass cursor.command to one of the
.execute*() methods.

sqlcmd may be a Unicode object in case the ODBC driver and/or
database support this.

Return values are not defined.

This method is unavailable if mxODBC was compiled with compile time
switch DISABLE_EXECUTE_CACHE.

.scroll(value[,mode='relative'])

Scroll the cursor in the result set according to mode.

If mode is 'relative' (default), value is taken as offset to the current
position in the result set, if set to 'absolute', value gives the absolute
position.

An IndexError is raised in case the scroll operation leaves the result
set. In this case, the cursor position is not changed.

This method will use native scrollable cursors, if the datasource
provides these, or revert to an emulation for forward-only scrollable
cursors. Please check whether the data source supports this method
using the included mx/ODBC/Misc/test.py script.

Warning:
Some ODBC drivers have trouble scrolling in result sets which use
BLOBs or other data types for which the data size cannot be determined
at prepare time. mxODBC currently raises a NotSupportedError in
case a request for backward scrolling is made in such a result set.
Hopefully, this will change as ODBC drivers become more mature.

.setcursorname(name)

Sets the name to be associated with the cursor object.

There is a length limit for names in SQL at 18 characters. An
InternalError will be raised if the name is too long or otherwise not
useable.

.setcursoroption(option, value)

Sets a cursor option to a new value.

Only a subset of the possible option values defined by ODBC are
available since this method could otherwise easily cause mxODBC to

36

6. mxODBC Cursor Objects

segfault – it makes changes possible which effect the way mxODBC
interfaces to the ODBC driver.

Only options with numeric values are currently supported.

Option Comment

SQL.ATTR_QUERY_TIMEOUT Sets the query timeout in seconds used for the
cursor. Queries that take longer raise an exception
after the timeout is reached.

Possible values:

Any positive integer or

SQL.QUERY_TIMEOUT_DEFAULT

Note that not all ODBC drivers support this option.

SQL.ATTR_ASYNC_ENABLE Enable asynchronous execution of commands.

Possible values:

SQL.ASYNC_ENABLE_OFF (default)

SQL.ASYNC_ENABLE_ON

SQL.ASYNC_ENABLE_DEFAULT

SQL.ATTR_MAX_LENGTH Maximum length of any fetched column. Default is
no limit.

Possible values:

Any positive integer or

SQL.MAX_LENGTH_DEFAULT (no limit)

SQL.ATTR_MAX_ROWS Limit the maximum number of rows to fetch in a
result set. Default is no limit.

Possible values:

Any positive integer or

SQL.MAX_ROWS_DEFAULT (no limit)

SQL.ATTR_NOSCAN Tell the ODBC driver not to scan the SQL
commands and unescape (expand) any ODBC
escape sequences it finds. Default is to scan for

37

mxODBC - Python ODBC Database Interface

Option Comment

them.

Possible values:

SQL.NOSCAN_OFF (default)

SQL.NOSCAN_ON

SQL.NOSCAN_DEFAULT

.setinputsizes(sizes)

This methods does nothing in mxODBC, it is just needed for DB API
compliance.

.setoutputsize(size[, column])

This methods does nothing in mxODBC, it is just needed for DB API
compliance.

.__iter__()

Returns the cursor itself. This method makes cursor objects usable as
iterators (new in Python 2.2).

6.3.1 Catalog Methods

Catalog methods allow you to access meta-level and structural information
about a data source in a portable way.

Some ODBC drivers do not support all of these methods or return
unusable data. As a result, you should verify correct operation for your
target data sources prior to relying on these methods.

All of the following catalog methods use the same interface: they do an
implicit call to cursor.execute() and return their output in form of a list
of rows which that can be fetched with the cursor.fetch*() methods in
the usual way. The number of available rows is available via
cursor.rowcount1. All catalog methods support keywords and use the
indicated default values for parameters which are omitted in the call.

1 Note that this was changed in mxODBC 3.0. Previously the catalog methods used to
return the number of rows in the result set.

38

6. mxODBC Cursor Objects

Please refer to the ODBC documentation for more detailed information
about parameters (if you pass None as a value where a string would be
expected, that entry is converted to NULL before passing it to the
underlying ODBC API).

Note that the result set layouts described here may not apply to your data
source. Some databases do not provide all the information given here and
thus generate slightly different result sets; expect column omissions or
additions.

The search patterns given as parameters to these catalog methods are
usually interpreted in a case-sensitive way. This means that even if the
database itself behaves case-insensitive for identifiers, you may still not find
what you're looking for if you don't use the case which the database
internally uses to store the identifier.

As an example take the SAP DB: it stores all unquoted identifiers using
uppercase letters. Trying to fetch e.g. information about a table using a
lowercase version of the name will result in an empty result set. You can
use connection.getinfo(SQL.IDENTIFIER_CASE) to determine how the
database stores identifiers. See the ODBC documentation for details.

The available catalog methods are:

.columns(qualifier=None, owner=None, table=None, column=None)

Catalog method which generates a result set having the following
schema:

Column Name Column Datatype Comment

TABLE_CAT VARCHAR(128) Always NULL.

TABLE_SCHEM VARCHAR(128) The name of the schema containing
TABLE_NAME.

TABLE_NAME VARCHAR(128) not
NULL

The name of the table, or view, or alias,
or synonym.

COLUMN_NAME VARCHAR(128) not
NULL

Name of the column of the specified
table, view, alias, or synonym.

DATA_TYPE SMALLINT not
NULL

SQL data type of column identified by
COLUMN_NAME.

TYPE_NAME VARCHAR(128) not
NULL

Character string representing the name
of the data type corresponding to

39

http://msdn.microsoft.com/library/en-us/odbc/htm/dasdkodbcoverview.asp
http://msdn.microsoft.com/library/en-us/odbc/htm/dasdkodbcoverview.asp

mxODBC - Python ODBC Database Interface

Column Name Column Datatype Comment

DATA_TYPE.

COLUMN_SIZE INTEGER If the DATA_TYPE column value
denotes a character or binary string,
then this column contains the
maximum length in characters for the
column.

For date, time, timestamp data types,
this is the total number of characters
required to display the value when
converted to character.

For numeric data types, this is either
the total number of digits, or the total
number of bits allowed in the column,
depending on the value in the
NUM_PREC_RADIX column in the
result set.

BUFFER_LENGTH INTEGER The maximum number of bytes for the
associated C buffer to store data from
this column if SQL_C_DEFAULT were
specified on the SQLBindCol(),
SQLGetData() and
SQLBindParameter() calls. This
length does not include any null-
terminator. For exact numeric data
types, the length accounts for the
decimal and the sign.

DECIMAL_DIGITS SMALLINT The scale of the column. NULL is
returned for data types where scale is
not applicable.

NUM_PREC_RADIX SMALLINT Either 10 or 2 or NULL. If DATA_TYPE
is an approximate numeric data type,
this column contains the value 2, then
the COLUMN_SIZE column contains
the number of bits allowed in the
column.

If DATA_TYPE is an exact numeric data
type, this column contains the value 10
and the COLUMN_SIZE contains the
number of decimal digits allowed for
the column.

For numeric data types, the database
can return a NUM_PREC_RADIX of
either 10 or 2.

40

6. mxODBC Cursor Objects

Column Name Column Datatype Comment

NULLABLE SMALLINT not
NULL

SQL.NO_NULLS if the column does not
accept NULL values.

REMARKS VARCHAR(254) May contain descriptive information
about the column or NULL.

It is possible that no usable information
is returned in this column (due to
optimizations).

COLUMN_DEF VARCHAR(254) The column's default value. If the
default value is a numeric literal, then
this column contains the character
representation of the numeric literal
with no enclosing single quotes. If the
default value is a character string, then
this column is that string enclosed in
single quotes. If the default value a
pseudo-literal, such as for DATE, TIME,
and TIMESTAMP columns, then this
column contains the keyword of the
pseudo-literal (e.g. CURRENT DATE)
with no enclosing quotes.

If NULL was specified as the default
value, then this column returns "NULL".
If the default value cannot be
represented without truncation, then
this column contains "TRUNCATED"
with no enclosing single quotes. If no
default value was specified, then this
column is NULL.

It is possible that no usable information
is returned in this column (due to
optimizations).

SQL_DATA_TYPE SMALLINT not
NULL

SQL data type. This column is the same
as the DATA_TYPE column.

SQL_DATETIME_SUB SMALLINT The subtype code for datetime data
types: SQL.CODE_DATE,
SQL.CODE_TIME,
SQL.CODE_TIMESTAMP. For all other
data types this column returns NULL.

CHAR_OCTET_LENGTH INTEGER Contains the maximum length in octets
for a character data type column. For
Single Byte character sets, this is the
same as COLUMN_SIZE. For all other

41

mxODBC - Python ODBC Database Interface

Column Name Column Datatype Comment

data types it is NULL.

ORDINAL_POSITION INTEGER not NULL The ordinal position of the column in
the table. The first column in the table
is number 1.

IS_NULLABLE VARCHAR(254) Contains the string "NO" if the column
is known to be not nullable; and "YES"
otherwise.

.columnprivileges(qualifier=None, owner=None, table=None,
column=None)

Catalog method which generates a result set having the following
schema:

Column Name Column Datatype Comment

TABLE_CAT VARCHAR(128) Always NULL.

TABLE_SCHEM VARCHAR(128) The name of the schema containing
TABLE_NAME.

TABLE_NAME VARCHAR(128) not
NULL

The name of the table, or view, or alias, or
synonym.

COLUMN_NAME VARCHAR(128) not
NULL

Name of the column of the specified table,
view, alias, or synonym.

GRANTOR VARCHAR(128) Authorization ID of the user who granted the
privilege.

GRANTEE VARCHAR(128) Authorization ID of the user to whom the
privilege is granted.

PRIVILEGE VARCHAR(128) The table privilege. This may be one of the
following strings: "INSERT", "REFERENCES",
"SELECT", "UPDATE".

IS_GRANTABLE VARCHAR(3) Indicates whether the grantee is permitted to
grant the privilege to other users. This can be
"YES", "NO" or NULL.

42

6. mxODBC Cursor Objects

.foreignkeys(primary_qualifier=None, primary_owner=None,
pimary_table=None, foreign_qualifier=None, foreign_owner=None,
foreign_table=None)

Catalog method which generates a result set having the following
schema:

Column Name Column Datatype Comment

PKTABLE_CAT VARCHAR(128) Always NULL.

PKTABLE_SCHEM VARCHAR(128) The name of the schema containing
PKTABLE_NAME.

PKTABLE_NAME VARCHAR(128) not
NULL

Name of the table containing the primary
key.

PKCOLUMN_NAME VARCHAR(128) not
NULL

Primary key column name.

FKTABLE_CAT VARCHAR(128) Always NULL.

FKTABLE_SCHEM VARCHAR(128) The name of the schema containing
FKTABLE_NAME.

FKTABLE_NAME VARCHAR(128) not
NULL

Name of the table containing the primary
key.

FKCOLUMN_NAME VARCHAR(128) not
NULL

Primary key column name.

ORDINAL_POSITION SMALLINT not
NULL

The ordinal position of the column in the
key, starting at 1.

UPDATE_RULE SMALLINT Action to be applied to the foreign key
when the SQL operation is UPDATE:
SQL.RESTRICT, SQL.NO_ACTION,
SQL.CASCADE, SQL.SET_NULL.

DELETE_RULE SMALLINT Action to be applied to the foreign key
when the SQL operation is DELETE:
SQL.CASCADE, SQL.NO_ACTION,
SQL.RESTRICT, SQL.SET_DEFAULT,
SQL.SET_NULL

43

mxODBC - Python ODBC Database Interface

Column Name Column Datatype Comment

FK_NAME VARCHAR(128) Foreign key identifier. NULL if not
applicable to the data source.

PK_NAME VARCHAR(128) Primary key identifier. NULL if not
applicable to the data source.

DEFERRABILITY SMALLINT Possible values:
SQL.INITIALLY_DEFERRED,
SQL.INITIALLY_IMMEDIATE,
SQL.NOT_DEFERRABLE.

.gettypeinfo(sqltypecode)

Catalog method which generates a result set having the following
schema:

Column Name Column Datatype Comment

TYPE_NAME VARCHAR(128) not
NULL

Character representation of the SQL
data type name, e.g. "VARCHAR",
"DATE", "INTEGER".

DATA_TYPE SMALLINT not
NULL

SQL data type of column identified by
COLUMN_NAME.

COLUMN_SIZE INTEGER If the DATA_TYPE column value
denotes a character or binary string,
then this column contains the
maximum length in characters for the
column.

For date, time, timestamp data types,
this is the total number of characters
required to display the value when
converted to character.

For numeric data types, this is either
the total number of digits, or the total
number of bits allowed in the column,
depending on the value in the
NUM_PREC_RADIX column in the
result set.

LITERAL_PREFIX VARCHAR(128) Prefix for a literal of this data type. This
column is NULL for data types where a

44

6. mxODBC Cursor Objects

Column Name Column Datatype Comment

literal prefix is not applicable.

LITERAL_SUFFIX VARCHAR(128) Suffix for a literal of this data type. This
column is NULL for data types where a
literal prefix is not applicable.

CREATE_PARAMS VARCHAR(128) The text of this column contains a list of
keywords, separated by commas,
corresponding to each parameter the
application may specify in parenthesis
when using the name in the
TYPE_NAME column as a data type in
SQL.

The keywords in the list can be any of
the following: "LENGTH", "PRECISION",
"SCALE". They appear in the order that
the SQL syntax requires that they be
used.

NULL is returned if there are no
parameters for the data type definition,
(such as INTEGER).

Note: The intent of CREATE_PARAMS is
to enable an application to customize
the interface for a DDL builder.

NULLABLE SMALLINT not
NULL

Indicates whether the data type accepts
a NULL value

SQL.NO_NULLS - NULL values are
disallowed.

SQL.NULLABLE - NULL values are
allowed.

CASE_SENSITIVE SMALLINT not
NULL

Indicates whether the data type can be
treated as case sensitive for collation
purposes; valid values are SQL.TRUE
and SQL.FALSE.

SEARCHABLE SMALLINT not
NULL

Indicates how the data type is used in a
WHERE clause. Valid values are:

SQL.UNSEARCHABLE: if the data type
cannot be used in a WHERE clause.

SQL.LIKE_ONLY: if the data type can be
used in a WHERE clause only with the

45

mxODBC - Python ODBC Database Interface

Column Name Column Datatype Comment

LIKE predicate.

SQL.ALL_EXCEPT_LIKE: if the data type
can be used in a WHERE clause with all
comparison operators except LIKE.

SQL.SEARCHABLE: if the data type can
be used in a WHERE clause with any
comparison operator.

UNSIGNED_ATTRIBUTE SMALLINT Indicates where the data type is
unsigned. The valid values are:
SQL.TRUE, SQL.FALSE or NULL. A
NULL indicator is returned if this
attribute is not applicable to the data
type.

FIXED_PREC_SCALE SMALLINT not
NULL

Contains the value SQL.TRUE if the
data type is exact numeric and always
has the same precision and scale;
otherwise, it contains SQL.FALSE.

AUTO_INCREMENT SMALLINT Contains SQL.TRUE if a column of this
data type is automatically set to a
unique value when a row is inserted;
otherwise, contains SQL.FALSE.

LOCAL_TYPE_NAME VARCHAR(128) This column contains any localized
(native language) name for the data
type that is different from the regular
name of the data type. If there is no
localized name, this column is NULL.

This column is intended for display
only. The character set of the string is
locale-dependent and is typically the
default character set of the database.

MINIMUM_SCALE INTEGER The minimum scale of the SQL data
type. If a data type has a fixed scale, the
MINIMUM_SCALE and
MAXIMUM_SCALE columns both
contain the same value. NULL is
returned where scale is not applicable.

MAXIMUM_SCALE INTEGER The maximum scale of the SQL data
type. NULL is returned where scale is
not applicable. If the maximum scale is
not defined separately in the database,
but is defined instead to be the same as

46

6. mxODBC Cursor Objects

Column Name Column Datatype Comment

the maximum length of the column,
then this column contains the same
value as the COLUMN_SIZE column.

SQL_DATA_TYPE SMALLINT not
NULL

SQL data type. This column is the same
as the DATA_TYPE column.

SQL_DATETIME_SUB SMALLINT The subtype code for datetime data
types: SQL.CODE_DATE,
SQL.CODE_TIME,
SQL.CODE_TIMESTAMP. For all other
data types this column returns NULL.

NUM_PREC_RADIX SMALLINT Either 10 or 2 or NULL. If DATA_TYPE is
an approximate numeric data type, this
column contains the value 2, then the
COLUMN_SIZE column contains the
number of bits allowed in the column.

If DATA_TYPE is an exact numeric data
type, this column contains the value 10
and the COLUMN_SIZE contains the
number of decimal digits allowed for
the column.

For numeric data types, the database
can return a NUM_PREC_RADIX of
either 10 or 2.

INTERVAL_PRECISION SMALLINT Datetime interval precision or NULL is
interval types are not supported by the
database.

.primarykeys(qualifier=None, owner=None, table=None)

Catalog method which generates a result set having the following
schema:

Column Name Column Datatype Comment

TABLE_CAT VARCHAR(128) Always NULL.

TABLE_SCHEM VARCHAR(128) The name of the schema containing
TABLE_NAME.

47

mxODBC - Python ODBC Database Interface

Column Name Column Datatype Comment

TABLE_NAME VARCHAR(128) not
NULL

The name of the table, or view, or alias, or
synonym.

COLUMN_NAME VARCHAR(128) not
NULL

Primary Key column name.

ORDINAL_POSITION SMALLINT not
NULL

Column sequence number in the primary
key, starting with 1.

PK_NAME VARCHAR(128) Primary key identifier. NULL if not
applicable to the data source.

.procedures(qualifier=None, owner=None, procedure=None)

Catalog method which generates a result set having the following
schema:

Column Name Column Datatype Comment

PROCEDURE_CAT VARCHAR(128) Always NULL.

PROCEDURE_SCHEM VARCHAR(128) The name of the schema containing
PROCEDURE_NAME.

PROCEDURE_NAME VARCHAR(128) not
NULL

The name of the procedure.

NUM_INPUT_PARAMS INTEGER not NULL Number of input parameters.

NUM_OUTPUT_PARAMS INTEGER not NULL Number of output parameters.

NUM_RESULT_SETSNUM
_RESULT_SETS

INTEGER not NULL Number of result sets returned by
the procedure.

REMARKS VARCHAR(254) Contains the descriptive information
about the procedure.

PROCEDURE_TYPE SMALLINT Defines the procedure type:

SQL.PT_UNKNOWN: It cannot be
determined whether the procedure

48

6. mxODBC Cursor Objects

Column Name Column Datatype Comment

returns a value.

SQL.PT_PROCEDURE: The returned
object is a procedure; that is, it does
not have a return value.

SQL.PT_FUNCTION: The returned
object is a function; that is, it has a
return value.

.procedurecolumns(qualifier=None, owner=None, procedure=None,
column=None)

Catalog method which generates a result set having the following
schema (the term "column" refers to the procedure's call parameters):

Column Name Column Datatype Comment

PROCEDURE_CAT VARCHAR(128) Always NULL.

PROCEDURE_
SCHEM

VARCHAR(128) The name of the schema containing
PROCEDURE_NAME.

PROCEDURE_
NAME

VARCHAR(128) The name of the table, or view, or alias, or
synonym.

COLUMN_NAME VARCHAR(128) Name of the column of the specified table,
view, alias, or synonym.

COLUMN_TYPE SMALLINT not
NULL

Identifies the type information associated
with this column. Possible values:

SQL.PARAM_TYPE_UNKNOWN: the
parameter type is unknown.

SQL.PARAM_INPUT: this parameter is an
input parameter.

SQL.PARAM_INPUT_OUTPUT: this
parameter is an input / output parameter.

SQL.PARAM_OUTPUT: this parameter is an
output parameter.

SQL.RETURN_VALUE: the procedure column
is the return value of the procedure.

49

mxODBC - Python ODBC Database Interface

Column Name Column Datatype Comment

SQL.RESULT_COL: this parameter is actually
a column in the result set.

DATA_TYPE SMALLINT not
NULL

SQL data type of column.

TYPE_NAME VARCHAR(128) not
NULL

Character string representing the name of
the data type corresponding to DATA_TYPE.

COLUMN_SIZE INTEGER If the DATA_TYPE column value denotes a
character or binary string, then this column
contains the maximum length in characters
for the column.

For date, time, timestamp data types, this is
the total number of characters required to
display the value when converted to
character.

For numeric data types, this is either the
total number of digits, or the total number of
bits allowed in the column, depending on
the value in the NUM_PREC_RADIX column
in the result set.

BUFFER_LENGTH INTEGER The maximum number of bytes for the
associated C buffer to store data from this
column if SQL.C_DEFAULT were specified
on the SQLBindCol(),
SQLGetData() and
SQLBindParameter() ODBC calls
used internally by mxODBC. This length
does not include any null-terminator. For
exact numeric data types, the length
accounts for the decimal and the sign.

Note: This column is of little value to Python
applications.

DECIMAL_DIGITS SMALLINT The scale of the column. NULL is returned
for data types where scale is not applicable.

NUM_PREC_
RADIX

SMALLINT Either 10 or 2 or NULL. If DATA_TYPE is an
approximate numeric data type, this column
contains the value 2, then the
COLUMN_SIZE column contains the
number of bits allowed in the column.

If DATA_TYPE is an exact numeric data type,

50

6. mxODBC Cursor Objects

Column Name Column Datatype Comment

this column contains the value 10 and the
COLUMN_SIZE contains the number of
decimal digits allowed for the column.

For numeric data types, the database can
return a NUM_PREC_RADIX of either 10 or
2.

NULLABLE SMALLINT not
NULL

SQL.NO_NULLS if the column does not
accept NULL values.

REMARKS VARCHAR(254) May contain descriptive information about
the column or NULL.

It is possible that no usable information is
returned in this column (due to
optimizations).

COLUMN_DEF VARCHAR(3) The column's default value. If the default
value is a numeric literal, then this column
contains the character representation of the
numeric literal with no enclosing single
quotes. If the default value is a character
string, then this column is that string
enclosed in single quotes. If the default value
a pseudo-literal, such as for DATE, TIME,
and TIMESTAMP columns, then this column
contains the keyword of the pseudo-literal
(e.g. CURRENT DATE) with no enclosing
quotes.

If NULL was specified as the default value,
then this column returns "NULL". If the
default value cannot be represented without
truncation, then this column contains
"TRUNCATED" with no enclosing single
quotes. If no default value was specified,
then this column is NULL.

It is possible that no usable information is
returned in this column (due to
optimizations).

SQL_DATA_TYPE SMALLINT not
NULL

SQL data type. This column is the same as
the DATA_TYPE column.

SQL_DATETIME_
SUB

SMALLINT The subtype code for datetime data types:
SQL.CODE_DATE, SQL.CODE_TIME,
SQL.CODE_TIMESTAMP. For all other data
types this column returns NULL.

51

mxODBC - Python ODBC Database Interface

Column Name Column Datatype Comment

CHAR_OCTET_
LENGTH

INTEGER Contains the maximum length in octets for a
character data type column. For Single Byte
character sets, this is the same as
COLUMN_SIZE. For all other data types it is
NULL.

ORDINAL_
POSITION

INTEGER not NULL The ordinal position of the parameter
column in the procedure call. The first
column has an ordinal position of 1.

IS_NULLABLE VARCHAR(254) Contains the string "NO" if the column is
known to be not nullable, "" if this cannot be
determined, or "YES" if it is known to be
nullable.

.specialcolumns(qualifier=None,owner=None,table=None,
coltype=SQL.BEST_ROWID,scope=SQL.SCOPE_SESSION,
nullable=SQL.NO_NULLS)

Catalog method which generates a result set having the following
schema:

Column Name Column Datatype Comment

SCOPE SMALLINT The duration for which the name in
COLUMN_NAME is guaranteed to point to
the same row. Contains one of the
following values: SQL.SCOPE_CURROW,
SQL.SCOPE_TRANSACTION,
SQL.SCOPE_SESSION.

COLUMN_NAME VARCHAR(128) not
NULL

Name of the column that is (or part of) the
table's primary key.

DATA_TYPE SMALLINT not
NULL

SQL data type of column identified by
COLUMN_NAME.

TYPE_NAME VARCHAR(128) not
NULL

Character string representing the name of
the data type corresponding to
DATA_TYPE.

COLUMN_SIZE INTEGER If the DATA_TYPE column value denotes a
character or binary string, then this column
contains the maximum length in characters
for the column.

52

6. mxODBC Cursor Objects

Column Name Column Datatype Comment

For date, time, timestamp data types, this
is the total number of characters required
to display the value when converted to
character.

For numeric data types, this is either the
total number of digits, or the total number
of bits allowed in the column, depending
on the value in the NUM_PREC_RADIX
column in the result set.

BUFFER_LENGTH INTEGER The maximum number of bytes for the
associated C buffer to store data from this
column if SQL.C_DEFAULT were specified
on the SQLBindCol(),
SQLGetData() and
SQLBindParameter() ODBC calls
used internally by mxODBC. This length
does not include any null-terminator. For
exact numeric data types, the length
accounts for the decimal and the sign.

Note: This column is of little value to
Python applications.

DECIMAL_DIGITS SMALLINT The scale of the column. NULL is returned
for data types where scale is not
applicable.

PSEUDO_COLUMN SMALLINT Indicates whether or not the column is a
pseudo-column. Possible values:
SQL.PC_NOT_PSEUDO,
SQL.PC_UNKNOWN, SQL.PC_PSEUDO.

.statistics(qualifier=None, owner=None, table=None,
unique=SQL.INDEX_ALL, accuracy=SQL.ENSURE)

Catalog method which generates a result set having the following
schema:

Column Name Column Datatype Comment

TABLE_CAT VARCHAR(128) Always NULL.

TABLE_SCHEM VARCHAR(128) The name of the schema containing
TABLE_NAME.

53

mxODBC - Python ODBC Database Interface

Column Name Column Datatype Comment

TABLE_NAME VARCHAR(128) not
NULL

The name of the table, or view, or alias, or
synonym.

NON_UNIQUE SMALLINT Indicates whether the index prohibits
duplicate values. Returns:

SQL.TRUE if the index allows duplicate
values.

SQL.FALSE if the index values must be
unique.

NULL is returned if the TYPE column
indicates that this row is SQL.TABLE_STAT
(statistics information on the table itself).

INDEX_QUALIFIER VARCHAR(128) The string that would be used to qualify
the index name in the DROP INDEX
statement. Appending a period (.) plus the
INDEX_NAME results in a full
specification of the index.

INDEX_NAME VARCHAR(128) The name of the index. If the TYPE
column has the value SQL.TABLE_STAT,
this column has the value NULL.

TYPE SMALLINT not
NULL

Indicates the type of information
contained in this row of the result set:

SQL.TABLE_STAT - Indicates this row
contains statistics information on the
table itself.

SQL.INDEX_CLUSTERED - Indicates this
row contains information on an index,
and the index type is a clustered index.

SQL.INDEX_HASHED - Indicates this row
contains information on an index, and the
index type is a hashed index.

SQL.INDEX_OTHER - Indicates this row
contains information on an index, and the
index type is other than clustered or
hashed.

ORDINAL_POSITION SMALLINT Ordinal position of the column within the
index whose name is given in the
INDEX_NAME column. A NULL value is
returned for this column if the TYPE

54

6. mxODBC Cursor Objects

Column Name Column Datatype Comment

column has the value of
SQL.TABLE_STAT.

COLUMN_NAME VARCHAR(128) Name of the column in the index. A NULL
value is returned for this column if the
TYPE column has the value of
SQL.TABLE_STAT.

ASC_OR_DESC CHAR(1) Sort sequence for the column; "A" for
ascending, "D" for descending. NULL
value is returned if the value in the TYPE
column is SQL.TABLE_STAT.

CARDINALITY INTEGER If the TYPE column contains the value
SQL.TABLE_STAT, this column contains
the number of rows in the table.

If the TYPE column value is not
SQL.TABLE_STAT, this column contains
the number of unique values in the index.

A NULL value is returned if the
information cannot be determined.

PAGES INTEGER If the TYPE column contains the value
SQL.TABLE_STAT, this column contains
the number of pages used to store the
table.

If the TYPE column value is not
SQL.TABLE_STAT, this column contains
the number of pages used to store the
indexes.

A NULL value is returned if the
information cannot be determined.

FILTER_CONDITION VARCHAR(128) If the index is a filtered index, this is the
filter condition. NULL is returned if TYPE
is SQL.TABLE_STAT or the database does
not support filtered indexes.

.tables(qualifier=None, owner=None, table=None, type=None)

Catalog method which generates a result set having the following
schema:

55

mxODBC - Python ODBC Database Interface

Column Name Column
Datatype

Comment

TABLE_CAT VARCHAR(128) The name of the catalog containing TABLE_SCHEM.
This column contains a NULL value.

TABLE_SCHEM VARCHAR(128) The name of the schema containing TABLE_NAME.

TABLE_NAME VARCHAR(128) The name of the table, or view, or alias, or synonym.

TABLE_TYPE VARCHAR(128) Identifies the type given by the name in the
TABLE_NAME column. It can have the string values
"TABLE", "VIEW", "INOPERATIVE VIEW", "SYSTEM
TABLE", "ALIAS", or "SYNONYM".

REMARKS VARCHAR(254) Contains the descriptive information about the table.

.tableprivileges(qualifier=None, owner=None, table=None)

Catalog method which generates a result set having the following
schema:

Column Name Column Datatype Comment

TABLE_CAT VARCHAR(128) Always NULL.

TABLE_SCHEM VARCHAR(128) The name of the schema containing
TABLE_NAME.

TABLE_NAME VARCHAR(128) not
NULL

The name of the table, or view, or alias, or
synonym.

GRANTOR VARCHAR(128) Authorization ID of the user who granted the
privilege.

GRANTEE VARCHAR(128) Authorization ID of the user to whom the
privilege is granted.

PRIVILEGE VARCHAR(128) The table privilege. This may be one of the
following strings: "ALTER", "CONTROL",
"INDEX", "DELETE", "INSERT", "REFERENCES",
"SELECT", "UPDATE".

56

6. mxODBC Cursor Objects

Column Name Column Datatype Comment

IS_GRANTABLE VARCHAR(3) Indicates whether the grantee is permitted to
grant the privilege to other users. This can be
"YES", "NO" or NULL.

6.4 Cursor Object Attributes

.arraysize

This read/write attribute specifies the number of rows to fetch at a time
with .fetchmany(). It defaults to 1 meaning to fetch a single row at a
time.

mxODBC observes this value with respect to the .fetchmany()
method, but currently interacts with the database a single row at a time.

.closed

This read-only attribute is true if the cursor or the underlying connection
was closed by calling the .close() method.

Any action on a closed connection or cursor will result in a
ProgrammingError to be raised. This variable can be used to
conveniently test for this state.

.colcount

This read-only attribute specifies the number of columns in the current
result set.

The attribute is -1 in case no .execute*() has been performed on the
cursor.

.command

Provides access to the last SQL command string or Unicode object that
was passed to .prepare() or .execute*(). If no such command is
available, None is returned.

It is set by .prepare() and .execute*() and reset by calling one of
the catalog methods or .close() on the cursor.

Note that .command may be a Unicode object in case a Unicode object
was passed to one of the above methods.

57

mxODBC - Python ODBC Database Interface

.connection

Connection object on which the cursor operates.

.datetimeformat

Attribute to set the output format for date/time/timestamp columns on a
per cursor basis. It takes the same values as the
connection.datetimeformat instance variable and defaults to the
creating connection object's settings for date/time format.

.decimalformat

Attribute to set the output format for decimal/numeric columns on a per
cursor basis. It takes the same values as the
connection.decimalformat instance variable and defaults to the
creating connection object's settings for decimal format.

.description

This read-only attribute is a sequence of 7-item sequences for
operations that produce a result set (which may be empty).

Each of these sequences contains information describing one result
column: (name, type_code, display_size, internal_size,
precision, scale, null_ok).

This attribute will be None for operations that do not return rows or if
the cursor has not had an operation invoked via the .execute*()
method yet.

mxODBC always returns None for display_size and internal_size.
This information can be obtained via connection.gettypeinfo(), if
needed.

The type_code can be interpreted by comparing it to the type objects
specified in the section 7 Type Objects and Constructors below.
mxODBC returns the SQL type integers in this field. These are described
in the section 7 Supported Data Types and are available through the SQL
singleton defined at module level.

.messages

This is a Python list object to which the standard mxODBC error handler
appends tuples (exception class, exception value) for all
messages which the interfaces receives from the underlying ODBC
driver or manager for this cursor. See the Error Handlers section 9 for
details.

The list is cleared by all cursor methods calls (prior to executing the call)
except for the .fetch*() calls to avoid excessive memory usage and
can also be cleared explicitly by executing del cursor.messages[:].

58

6. mxODBC Cursor Objects

An application can use the information in this list to verify correct
operation of the method calls. This is particularly useful if the ODBC
driver or database splits the error information across multiple error
messages. In such a case, only one of the messages will be used to raise
the exception by mxODBC (usually the top-most), but this message may
not provide enough information to track down the problem.

.paramcount

This read-only attribute specifies the number of parameters in the
current prepared command.

The attribute is -1 in case this information is not available.

.rowcount

This read-only attribute specifies the number of rows that the last
.execute*() produced (for DQL statements like select) or affected
(for SQL DML statements like update or insert).

The attribute is -1 in case no .execute*() has been performed on the
cursor or the rowcount of the last operation is not determinable by the
interface or the database.

You should check whether the database you are interfacing to supports
.rowcount before writing code which relies on it. Many databases such
as MS Access and Oracle do not provide this information to the ODBC
driver, so .rowcount will always be –1.

.rownumber

This read-only attribute provides the current 0-based row position of the
cursor in the result set. The next .fetch*() will return rows starting at
the given position.

The row position is automatically updated whenever the cursor moves
through the result set, either due to fetches or scrolls.

The attribute is None in case no .execute*() has been performed on
the cursor or the cursor position cannot be determined.

You should check whether the database you are interfacing to supports
.rownumber before writing code which relies on it. Many databases such
as MS Access and Oracle do not provide this information to the ODBC
driver, so .rownumber will always be None.

.stringformat

Attribute to set the conversion format for string columns on a per cursor
basis. It takes the same values as the connection.stringformat
instance variable and defaults to the creating connection object's
settings for stringformat.

59

mxODBC - Python ODBC Database Interface

7. Data Types supported by mxODBC

mxODBC tries to maintain as much of the available information across the
Python-ODBC bridge as possible. In order to implement this, mxODBC
converts between the ODBC and the Python world by using native data
types in both worlds.

You should note however, that some ODBC drivers return data using
different types than the ones accepted for input, e.g. a database might
accept a time value, convert it internally to a timestamp and then return it
in a subsequent SELECT as timestamp value.

mxODBC cannot know that the value only contains valid time information
and no date information and thus converts the output data into an
mxDateTime DateTime instance instead of an
mx.DateTime.DateTimeDelta instance (which would normally be
returned for time values).

The included mx/ODBC/Misc/test.py can help to check for this behavior. It
tests many common column types and other database features which are
useful to know when writing applications for a particular database backend.

7.1 mxODBC Input Binding Modes

When passing parameters to the .execute*() methods of a cursor,
mxODBC has to apply type conversions to the parameters in order to send
them to the database in an appropriate form. This process is called binding
a variable.

mxODBC implements two different input variable binding modes
depending on what the ODBC driver can deliver:

Binding Mode Value of
connection.bindmethod

Comments

SQL type
binding

BIND_USING_SQLTYPE The database is asked for the
appropriate data type and
mxODBC tries to convert the
input variable into that type.

This is the preferred binding

60

7. Data Types supported by mxODBC

Binding Mode Value of Comments
connection.bindmethod

mode since it allows to choose
the right conversion before
passing the data to the ODBC
driver.

Python type
binding

BIND_USING_PYTHONTYPE mxODBC looks at the type of
the input variable and passes its
value to the database directly;
conversion is done by the
ODBC driver/manager as
necessary.

The default depends on the settings with which the ODBC subpackage was
compiled. If not indicated in the Subpackages section 12, it is set to SQL
type binding mode (BIND_USING_SQLTYPE), since this offers more
flexibility than Python type binding.

Note:
For SQL type binding to be usable, mxODBC needs a working ODBC
SQLDescribeParam() API implementation. This is checked at connect time
and the binding style adjusted to Python type binding, if mxODBC cannot
rely on SQLDescribeParam(). Unfortunately, not all database ODBC
drivers tell the truth about the capabilities of their SQLDescribeParam()
implementation, so workarounds are in place for a few known cases. If you
find more such cases, please contact support for help.

7.2 SQL Type Input Binding

The following data types are used for SQL type input binding mode
(connection.bindmethod set to BIND_USING_SQLTYPE).

The SQL type is what the database ODBC driver expects from mxODBC.
The interface then tries to convert the Python input objects to the Python
type given in the table before passing it on to the ODBC driver.

61

mailto:support@egenix.com

mxODBC - Python ODBC Database Interface

SQL Type Python Type Comments

SQL.CHAR,
SQL.VARCHAR,
SQL.LONGVARCHAR
(TEXT, BLOB or LONG in
SQL)

String or
Unicode or
stringified object

The conversion truncates the
string at the SQL field length. The
handling of special characters
depends on the codepage the
database uses.

Some database drivers/managers
can't handle binary data in these
column types, so you better
check the database's capabilities
with the included
mx/ODBC/Misc/test.py first
before using them.

The handling of Unicode
depends on the setting of the
.stringformat attribute.

In NATIVE_UNICODE_
STRINGFORMAT mode, Unicode
is passed to the ODBC driver as
native Unicode. Strings are
converted to Unicode using the
connection's character
.encoding setting.

In all other modes, Unicode is
converted to an 8-bit string
before passing it to the ODBC
driver using the connection's
character .encoding setting.
Strings are passed as-is.

SQL.WCHAR,
SQL.WVARCHAR,
SQL.WLONGVARCHAR
(TEXT, BLOB or LONG in
SQL)

String or
Unicode or
stringified object

The conversion truncates the
string at the SQL field length.

Note that currently only very few
ODBC drivers can handle native
Unicode. The MS Access and
SQL Server ODBC drivers are the
only ones we have successfully
tested.

The only way to store Unicode
data in a non-Unicode aware
database is by encoding it using
e.g. UTF-8.

The handling of Unicode
depends on the setting of the
.stringformat attribute.

In EIGHTBIT_STRINGFORMAT

62

7. Data Types supported by mxODBC

SQL Type Python Type Comments

and
UNICODE_STRINGFORMAT
mode, Unicode is converted to
an 8-bit string before passing it
to the ODBC driver using the
connection's character
.encoding setting. Strings are
passed as-is.

In all other modes, Unicode is
passed to the ODBC driver as
native Unicode. Strings are
converted to Unicode before
passing them to the ODBC driver
using the connection's character
.encoding setting.

SQL.BINARY,
SQL.VARBINARY,
SQL.LONGVARBINARY
(BLOB or LONG BYTE in
SQL)

Buffer or String Truncation at the SQL field
length. These columns can
contain embedded 0-bytes and
other special characters.

Handling of these column types
is database dependent. Please
refer to the database's
documentation for details.

Many databases store the passed
in data as-is and thus make these
columns types useable as storage
facility for arbitrary binary data.

SQL.TINYINT,
SQL.SMALLINT,
SQL.INTEGER,
SQL.BIT

Integer or
any other object which can be
converted to a Python integer

Conversion from the Python
integer (a C long) to the SQL
type is left to the ODBC
driver/manager, so expect the
usual truncations.

SQL.BIGINT Long integer or
any other object which can be
converted to a Python long
integer

Conversion to and from the
Python long integer is done via
string representation since there
is no C type with enough
precision to hold the value.

Because of this, you might
receive errors indicating
truncation or errors because the
database sent string data that
cannot be converted to a Python
long integer.

Not all SQL databases implement

63

mxODBC - Python ODBC Database Interface

SQL Type Python Type Comments

this type or impose size limits.

SQL.DECIMAL,
SQL.NUMERIC

Python decimal.Decimal or
Float or
any other object which can be
converted to a Python float

Conversion from the Python float
(a C double) to the SQL type is
left to the ODBC driver/manager,
so expect the usual truncations.

Python decimals are passed to
that database as strings, so no
truncation or loss of precision
occurs.

SQL.REAL,
SQL.FLOAT,
SQL.DOUBLE

Float or
any other object which can be
converted to a Python float

Conversion from the Python float
(a C double) to the SQL type is
left to the ODBC driver/manager,
so expect the usual truncations.

SQL.DATE DateTime instance or
datetime.date instance or
a tuple
(year,month,day) or
String or
a ticks value as Python
number

While you should use DateTime
instances, the module also
excepts Python datetime.date
instances, ticks (Python
numbers indicating the number
of seconds since the Unix Epoch;
these are converted to local time
and then stored in the database)
and tuples (year,month,day)
on input.

SQL.TIME DateTimeDelta instance or
datetime.time instance or
a tuple
(hour,minute,second) or
String or
a tocks value as Python
number

While you should use
DateTimeDelta instances, the
module also excepts Python
datetime.time instances, tocks
(Python numbers indicating the
number of seconds since
0:00:00.00) and tuples
(hour,minute,second) on
input.

SQL.TIMESTAMP DateTime instance or
datetime.datetime instance or
a tuple (year,month,day,
hour,minute,second) or
String or
a ticks value as Python
number

While you should use DateTime
instances, the module also
excepts Python
datetime.datetime instances,
ticks (Python numbers indicating
the number of seconds since the
epoch; these are converted to
local time and then stored in the
database) and tuples
(year,month,day,
hour,minute,second) on
input.

64

7. Data Types supported by mxODBC

SQL Type Python Type Comments

Any nullable column None The Python None singleton is
converted to the special SQL
NULL value.

Unsupported Type String or
stringified object

Input binding to these columns is
done via strings (or stringified
versions of the input data).

7.3 Python Type Input Binding

The following mappings are used for input variables in Python type input
binding mode (connection.bindmethod set to
BIND_USING_PYTHONTYPE). The table shows how the different Python
types are converted to SQL types.

Python Type SQL Type Comments

String SQL.VARCHAR,
SQL.LONGVARCHAR,
SQL.VARBINARY,
SQL.LONGVARBINARY
(char *)

The conversion truncates the string at the
SQL field length. If the string contains
binary data, SQL.VARBINARY is used for
passing the data to the ODBC
driver/manager.

The long variants are used for strings
longer than 256 characters.

Unicode SQL.WVARCHAR,
SQL.WLONGVARCHAR
(wchar_t *)

The conversion truncates the string at the
SQL field length. Note that not all ODBC
drivers/managers support Unicode data at
C level.

This binding is used for all cursors which
do not have the .stringformat
attribute set to
EIGHTBIT_STRINGFORMAT or
UNICODE_STRINGFORMAT.

In EIGHTBIT_STRINGFORMAT mode
(default) and
UNICODE_STRINGFORMAT mode,
Unicode objects are converted to a 8-bit
strings first and then passed to the ODBC

65

mxODBC - Python ODBC Database Interface

Python Type SQL Type Comments

driver/manager.

The long variant is used for Unicode data
longer than 256 code points.

Buffer SQL.VARBINARY,
SQL.LONGVARBINARY
(char *)

The conversion truncates the string at the
SQL field length. The string may contain
binary data.

If the ODBC driver/manager doesn't
support processing binary data using
strings, wrap the data object using Python
buffers (via the buffer() constructor)
to have mxODBC use a binary SQL type
for interfacing to the driver/manager. The
Oracle ODBC drivers usually need this.

The long variant is used for binary data
longer than 256 bytes.

Integer SQL.SLONG
(signed long)

Conversion from the signed long to the
SQL column type is left to the ODBC
driver/manager, so expect the usual
truncations.

Long Integer SQL.CHAR
(char *)

Conversion from the Python long integer
is done via the string representation since
there usually is no C type with enough
precision to hold the value.

Float SQL.DOUBLE
(double)

Conversion from the Python float (a C
double) to the SQL column type is left to
the ODBC driver/manager, so expect the
usual truncations.

decimal.Decimal SQL.VARCHAR,
SQL.LONGVARCHAR
(char *)

Conversion from a Python
decimal.Decimal instance is done via the
string representation to avoid losing
precision.

The long variant is used for decimal
representations longer than 256
characters.

DateTime SQL.TIMESTAMP
or
SQL.DATE

Converts the DateTime instance into a
TIMESTAMP or DATE struct defined by
the ODBC standard.

The ODBC driver may use the time part
of the instance or not depending on the

66

7. Data Types supported by mxODBC

Python Type SQL Type Comments

SQL column type (DATE or TIMESTAMP).

DateTimeDelta SQL.TIME Converts the DateTimeDelta instance into
a TIME struct defined by the ODBC
standard. Fractions of a second will be
lost in this conversion.

datetime.date SQL.DATE

Converts the datetime.date instance into
a DATE struct defined by the ODBC
standard.

datetime.time SQL.TIME

Converts the datetime.time instance into
a TIME struct defined by the ODBC
standard.

datetime.datetime SQL.TIMESTAMP

Converts the datetime.datetime instance
into a TIMESTAMP struct defined by the
ODBC standard.

None Any nullable column The Python None singleton is converted
to the special SQL NULL value.

Any other type SQL.VARCHAR,
SQL.LONGVARCHAR,
SQL.VARBINARY,
SQL.LONGVARBINARY
(char *)

Conversion is done by calling str(variable)
and then passing the resulting string
value to the ODBC driver/manager.

Same notes as for strings apply.

See the ODBC documentation and your ODBC driver's documentation for
more information on how these C data types are mapped to SQL column
types.

7.4 Output Conversions

The following data types are used per default for output variable mapping
and for SQL type input binding mode (connection.bindmethod set to
BIND_USING_SQLTYPE):

67

http://msdn.microsoft.com/library/en-us/odbc/htm/dasdkodbcoverview.asp

mxODBC - Python ODBC Database Interface

SQL Type Python Type Comments

SQL.CHAR,
SQL.VARCHAR,
SQL.LONGVARCHAR
(TEXT, BLOB or LONG
in SQL)

String The handling of special characters
depends on the codepage the database
uses.

In
NATIVE_UNICODE_STRINGFORMAT
and UNICODE_STRINGFORMAT
mode, the string data is converted to a
Python Unicode object based on the
connection's encoding setting.

SQL.WCHAR,
SQL.WVARCHAR,
SQL.WLONGVARCHAR
(TEXT, BLOB or LONG
in SQL)

String or
Unicode

Whether a Python string or Unicode
object is returned depends on the setting
of the .stringformat attribute of the
cursor fetching the data.

Unicode is only available in case
mxODBC was compiled with Unicode
support.

In EIGHTBIT_STRINGFORMAT
mode, the Unicode data is converted to a
Python string object based on the
connection's encoding setting.

SQL.BINARY,
SQL.VARBINARY,
SQL.LONGVARBINARY
(BLOB or LONG BYTE
in SQL)

String These can contain embedded 0-bytes and
other special characters.

Handling of these column types is
database dependent. Please refer to the
database's documentation for details.

SQL.TINYINT,
SQL.SMALLINT,
SQL.INTEGER,
SQL.BIT

Integer or
Long Integer

Bits are converted to Python integers 0
and 1 resp.

Unsigned short integers are fetched as
Python integers, unsigned integers as
Python long integers.

SQL.BIGINT Long Integer Conversion from the database type to
Python is done via a string.

SQL.DECIMAL,
SQL.NUMERIC

Float or
decimal.Decimal

In FLOAT_DECIMALFORMAT mode
(default), mxODBC will fetch the numeric
data as Python float. Since Python stores
floats as double precision C float,
rounding errors may occur during the
conversion.

In DECIMAL_DECIMALFORMAT mode,

68

7. Data Types supported by mxODBC

SQL Type Python Type Comments

mxODBC will fetch the numeric data as
string and create a Python
decimal.Decimal instance from it which is
then returned. This avoids any rounding
errors.

SQL.REAL,
SQL.FLOAT,
SQL.DOUBLE

Float Python stores floats as double precision C
float, so rounding errors may occur during
the conversion.

SQL.DATE DateTime instance or
datetime.date instance or
ticks or
(year,month,day) or
String

The type of the return values depends on
the setting of
cursor.datetimeformat and
whether the ODBC driver/manager does
return the value with proper type
information.

Default is to return DateTime instances.

SQL.TIME DateTimeDelta instance or
datetime.time instance or
tocks or
(hour,minute,second) or
String

The type of the return values depends on
the setting of
cursor.datetimeformat and
whether the ODBC driver/manager does
return the value with proper type
information.

Default is to return DateTimeDelta
instances.

SQL.TIMESTAMP DateTime instance or
datetime.datetime instance or
ticks or
(year,month,day,
hour,minute,second) or
String

The type of the return values depends on
the setting of
cursor.datetimeformat and
whether the ODBC driver/manager does
return the value with proper type
information.

Default is to return DateTime instances.

SQL NULL value None The Python None singleton is used to
represent the special SQL NULL value in
Python.

Unsupported Type String mxODBC will try to fetch data from
columns using unsupported SQL data
types as strings.

This is likely to always work but may
cause unwanted conversions and or
truncations or loss of precision.

69

mxODBC - Python ODBC Database Interface

Output bindings can only be applied using the above mapping by mxODBC
if the database correctly identifies the type of the output variables.

The SQL type given in the above table is also made available though the
cursor's .description tuple as type_code entry (position 1) for result
set generating SQL commands. You can compare this value directly to the
appropriate SQL object values, e.g. test for SQL.CHAR or SQL.VARCHAR.

7.5 Output Type Converter Functions

The last section defined the standard mapping mxODBC applies when
fetching output data from the database.

You can modify this mapping on-the-fly by defining a cursor converter
function which takes three arguments and has to return a 2-tuple:

def converter(position,sqltype,sqllen):
 # modify sqltype and sqllen as appropriate
 return sqltype,sqllen

Now tell the cursor to use this converter:
cursor.setconverter(converter)

or 3-tuple:

def converter(position,sqltype,sqllen):
 # modify sqltype and sqllen as appropriate, provide binddata as
 # input (e.g. for file names which should be used for file
 # binding)
 return sqltype,sqllen,binddata

Now tell the cursor to use this converter:
cursor.setconverter(converter)

The converter function is called for each output column prior to the first
.fetch*() operation executed on the cursor. The returned values are then
interpreted as defined in the table in section 7.2 Output Conversions and
SQL Type Input Binding.

The parameters have the following meanings:

position

identifies the 0-based position of the column in the result set.

70

7. Data Types supported by mxODBC

sqltype

is usually one of the SQL data type constants, e.g. SQL.CHAR for string
data, but could also have database specific values. mxODBC only
understands the ones defined in the above table, so this gives you a
chance to map user defined types to ones that Python can process.

sqllen

is only used for string data and defines the maximum length of strings
that can be read in that column (mxODBC allocates a memory buffer of
this size for the data transfer).

Returning 0 as sqllen will result in mxODBC dynamically growing the
data transfer buffer when fetching the column data. This is sometimes
handy in case you want to fetch data that can vary in size.

binddata

is optional and only needed for some special sqltypes. It will be used
in future versions to e.g. allow binding output columns to files which
some ODBC drivers support (the column data is transferred directly to a
file instead of copied into memory).

Cursor objects will use the connection's .converter attribute as default
converter. It defaults to None, meaning that no converter function is in
effect. None can also be used to disable the converter function on a cursor:

Don't use a converter function on the cursor
cursor.setconverter(None)

You can switch converter functions even in between fetches. mxODBC will
then reallocate and rebind the column buffers for you.

Example (always return INTEGER values as FLOATS):

def converter(position,sqltype,sqllen):
 if sqltype == SQL.INTEGER:
 sqltype = SQL.FLOAT
 return sqltype,sqllen

Now tell the cursor to use this converter:
cursor.setconverter(converter)

7.6 Auto-Conversions

While you should always try to use the above Python types for passing
input values to the respective columns, the package will try to automatically
convert the types you give into the ones the database expects when using

71

mxODBC - Python ODBC Database Interface

the SQL Type bind method, e.g. an integer literal '123' will be converted
into an integer 123 by mxODBC if the database ODBC driver requests an
integer.

The situation is different in Python type binding mode
(BIND_USING_PYTHONTYPE): the Python type used in the parameter is
passed directly to the database, thus passing '123' or 123 does make a
difference and could result in an error from the database.

7.7 Unicode and String Data Encodings

mxODBC also supports Unicode objects to interface with databases. As
more databases and ODBC drivers support Unicode natively, using
Unicode for text data stored in database becomes more attractive than ever
and allows you to avoid the problems you typically face when having to
deal with different text encodings and code pages in databases.

Even if you don't have access to an ODBC capable of dealing with Unicode
natively, you can still take advantage of the auto-conversion mechanisms in
mxODBC to simulate Unicode capabilities.

mxODBC provides several different run-time configurations to deal with
passing Unicode to and fetching it from an ODBC driver. The
.stringformat attribute of connection and cursor objects allows defining
how to convert string data into Python objects and vice-versa.

Unicode conversions to and from 8-bit strings in Python usually assume the
Python default encoding (which is ASCII unless you modify the Python
installation). Since the database may be using a different encoding,
mxODBC allows defining the encoding to be used on a per-connection
basis.

The .encoding attribute of connection objects is writeable for this
purpose. Its default value is None, meaning that Python's default encoding
(usually ASCII) is to be used. You can change the encoding by simply
assigning a valid encoding name to the attribute. Make sure that Python
supports the encoding (you can test this using the unicode() built-in).

The default conversion mechanism used in mxODBC is
EIGHTBIT_STRINGFORMAT (Unicode gets converted to 8-bit strings before
passing the data to the driver, output is always an 8-bit string), the default
encoding Python's default encoding.

72

7. Data Types supported by mxODBC

To store Unicode in a database, one possibility is to use the
UNICODE_STRINGFORMAT and set the encoding attribute to e.g. 'utf-8'.
mxODBC will then convert the Unicode input data to UTF-8, store this in
the database and convert it back to Unicode during fetch operations. Note
however that UTF-8 encoded data usually takes up more room in the
database than the Unicode equivalent, so may experience data truncations
which then cause the decoding process to fail.

Another possibility is to use the MIXED_STRINGFORMAT which allows
mxODBC to interface to the database using the best suitable data type. For
e.g. MS SQL Server this usually means passing all string data as Unicode
data to and from the database. In MIXED_STRINGFORMAT mode mxODBC
will return string data in the default format of the database driver, leaving
the conversion to the Python program.

Note:
mxODBC only supports Unicode objects at the data storage interface level
meaning that it can insert and fetch Unicode data from a database provided
that the database can handle Unicode and that the used mxODBC
subpackage was configured with Unicode support. It also supports SQL
commands given as Unicode data. However, it does not handle Unicode at
the schema interface level, that is e.g. cursor.description will not return
Unicode objects for the column names. This may be added to a future
version of mxODBC, but is currently not supported by the package.

7.8 Additional Comments

The above SQL types are provided by each subpackage in form of SQL type
code integers through attributes of the singleton object SQL, e.g. SQL.CHAR
is the type integer for a CHAR column.

You can decode the type_code value in the cursor.description tuple by
comparing it to one of those constants. A reverse mapping of integer codes
to code names is provided by the dictionary sqltype which is provided by
all subpackages.

Note:
You may run into problems when using the tuple versions for
date/time/timestamp arguments. This is because some databases (notably
MySQL) want these arguments to be passed as strings. mxODBC does the
conversion internally but tuples turn out as: '(1998,4,6)' which it will refuse
to accept. The solution: use DateTime[Delta] instances instead. These
convert themselves to ISO dates/times which most databases (including
MySQL) do understand.

73

mxODBC - Python ODBC Database Interface

To check the ODBC driver/manager capabilities and support for the above
column types, run the included mx/ODBC/Misc/test.py test script.

74

8. Supported DB-API Type Objects and Constructors

8. Supported DB-API Type Objects and
Constructors

Since many database have problems recognizing some column's or
parameter's type beforehand (e.g. for LONGs and date/time values), the
Python DB-API provides a set of standard constructors to create objects
that can hold special values. When passed to the cursor methods, the
module can then detect the proper type of the input parameter and bind it
accordingly.

In mxODBC these constructors are not needed: it uses the objects defined
in mxDateTime for date/time values and is able to pass strings and buffer
objects to LONG and normal CHAR columns without problems. You only
need them to write code that is portable across database interfaces.

A Cursor Object's description attribute returns information about each of
the result columns of a query. The type_code compares equal to one of
Type Objects defined below. Type Objects may be equal to more than one
type code (e.g. DATETIME could be equal to the type codes for date, time
and timestamp columns).

mxODBC returns more detailed description about type codes in the
description attribute. See the section 7 Supported Data Types for details.
The type objects are only defined for compatibility with the DB API
standard and other database interfaces.

Each subpackage exports the following constructors and singletons:

Date(year,month,day)

This function constructs an mxDateTime DateTime object holding the
given date value. The time is set to 0:00:00.

Time(hour,minute,second)

This function constructs an mxDateTime DateTimeDelta object holding
the given time value.

Timestamp(year,month,day,hour,minute,second)

This function constructs an mxDateTime DateTime object holding a
time stamp value.

DateFromTicks(ticks)

This function constructs an mxDateTime DateTime object holding the
date value from the given ticks value (number of seconds since the

75

http://www.egenix.com/files/python/mxDateTime.html

mxODBC - Python ODBC Database Interface

epoch; see the documentation of the standard Python time module for
details).

Usage of Unix ticks (number of seconds since the Epoch) for date/time
database interfacing can cause troubles because of the limited date
range they cover.

TimeFromTicks(ticks)

This function constructs an mxDateTime DateTimeDelta object holding
a time value from the given ticks value (number of seconds since the
epoch; see the documentation of the standard Python time module for
details).

TimestampFromTicks(ticks)

This function constructs an mxDateTime DateTime object holding a time
stamp value from the given ticks value (number of seconds since the
epoch; see the documentation of the standard Python time module for
details).

Usage of Unix ticks (number of seconds since the Epoch) for date/time
database interfacing can cause troubles because of the limited date
range they cover.

Binary(string)

This function constructs a buffer object pointing to the (long) string
value. On Python versions without buffer objects (prior to 1.5.2), the
string is taken as is.

STRING

This type object is used to describe columns in a database that are
string-based: SQL.CHAR, SQL.BINARY.

BINARY

This type object is used to describe (long) binary columns in a database:
SQL.LONGVARCHAR, SQL.LONGVARBINARY (e.g. LONG, RAW, BLOB,
TEXT).

NUMBER

This type object is used to describe numeric columns in a database:
SQL.DECIMAL, SQL.NUMERIC, SQL.DOUBLE, SQL.FLOAT, SQL.REAL,
SQL.DOUBLE, SQL.INTEGER, SQL.TINYINT, SQL.SMALLINT, SQL.BIT,
SQL.BIGINT.

DATETIME

This type object is used to describe date/time columns in a database:
SQL.DATE, SQL.TIME, SQL.TIMESTAMP.

76

8. Supported DB-API Type Objects and Constructors

ROWID

This type object is used to describe the "Row ID" column in a database.
mxODBC does not support this special column type and thus no type
code is equal to this type object.

SQL NULL values are represented by the Python None singleton on input
and output.

77

mxODBC - Python ODBC Database Interface

9. mxODBC Exceptions and Error Handling

The mxODBC package and all its subpackages use the DB API 2.0
exceptions layout. All exceptions are defined in the submodule
mx.ODBC.Error but also imported into the top-level package module
mx.ODBC as well as all sub-packages.

Note that all sub-packages use the same exception classes, so writing
cross-database applications is simplified this way.

The exception values are either

• a single string, or

• a tuple having the format (sqlstate, sqltype, errortext,
lineno)

SQL state (sqlstate) and type (sqltype) are defined by the ODBC
standard and may be extended by the specific ODBC driver handling the
connection. Please see the ODBC driver manual for details. lineno refers
to the line number in the mxODBC.c file to ease debugging the package.

Note on the mx.ODBC.Error Module

If you want to import the exception classes from the mx.ODBC.Error
submodule, you have to use the from…import form:

from mx.ODBC.Error import ProgrammingError

The reason is that the Error base class is imported into the top-level
mx.ODBC package when loading it, shadowing the module of the same
name. With the above form, Python will lookup mx.ODBC.Error in the
module dictionary instead of the mx.ODBC package and find the module
instead of the mx.ODBC.Error exception class.

9.1 Exception Classes

These exceptions are defined in the modules scope and also available as
attributes of the connection objects to easy writing applications using
different mxODBC sub-packages.

78

9. mxODBC Exceptions and Error Handling

Error

Baseclass for all other exceptions related to database or interface errors.

You can use this class to catch all errors related to database or interface
failures. error is just an alias to Error needed for DB-API 1.0
compatibility.

Error is a subclass of exceptions.StandardError.

Warning

Exception raised for important warnings like data truncations while
inserting, etc.

Warning is a subclass of exceptions.StandardError. This may
change in a future release to some other baseclass indicating warnings.

InterfaceError

Exception raised for errors that are related to the interface rather than
the database itself.

DatabaseError

Exception raised for errors that are related to the database.

DataError

Exception raised for errors that are due to problems with the processed
data like division by zero, numeric out of range, etc.

OperationalError

Exception raised for errors that are related to the database's operation
and not necessarily under the control of the programmer, e.g. an
unexpected disconnect occurs, the data source name is not found, a
transaction could not be processed, a memory allocation error occurred
during processing, etc.

IntegrityError

Exception raised when the relational integrity of the database is affected,
e.g. a foreign key check fails.

InternalError

Exception raised when the database encounters an internal error, e.g.
the cursor is not valid anymore, the transaction is out of sync, etc.

ProgrammingError

Exception raised for programming errors, e.g. table not found or already
exists, syntax error in the SQL statement, wrong number of parameters
specified, performing operations on closed connections etc.

79

mxODBC - Python ODBC Database Interface

NotSupportedError

Exception raised in case a method or database API was used which is
not supported by the database, e.g. requesting a .rollback() on a
connection that does not support transaction or has transactions turned
off.

This is the exception inheritance layout:

StandardError
|__Warning
|__Error
 |__InterfaceError
 |__DatabaseError
 |__DataError
 |__OperationalError
 |__IntegrityError
 |__InternalError
 |__ProgrammingError
 |__NotSupportedError

If you are interested in the exact mapping of SQL error codes to exception
classes, have a look at the mxODBC_ErrorCodeTranslations array defined
in the mxODBC source code (mxODBC.c) or inspect the errorclass
dictionary which is defined at subpackage scope.

If you need to specify your own SQLSTATE to exception mappings, you can
assign to the errorclass dictionary. It maps SQLSTATE strings to error
classes and is used by mxODBC internally.

9.2 Database Warnings

The default behavior of mxODBC is to raise all errors, including Warnings,
which many ODBC drivers issue for truncations, loss of precision in data
conversions, etc.

This may not always be desirable. If you want to mask Warnings, simply
set a connection.errorhandler like the one below to disable raising
exceptions for database warnings:

Error handler function
def myerrorhandler(connection, cursor, errorclass, errorvalue):

 """ This error handler ignores (but logs) warnings issued by
 the database.
 """
 # Append to messages list
 if cursor is not None:
 cursor.messages.append((errorclass, errorvalue))
 elif connection is not None:
 connection.messages.append((errorclass, errorvalue))

80

9. mxODBC Exceptions and Error Handling

 # Don't raise exceptions for Warnings
 if connection is None or \
 not issubclass(errorclass, connection.Warning):
 raise errorclass, errorvalue

Installation of the error handler
connection.errorhandler = myerrorhandler

If you need to catch errors or warnings at connection time, you can use the
optional keyword argument errorhandler to have the error handler
installed early enough to be able to deal with such errors or warnings:

connection = mx.ODBC.Windows.DriverConnect('DSN=test',
 errorhandler=myerrorhandler)

9.3 Exception Value Format

All ODBC driver generated exceptions use a standard exception value
layout.

The value will always be a tuple (sqlstate, sqlcode, messagetext,
lineno) with the following meanings:

sqlstate

SQL state as string; these values are defined in the ODBC
Documentation and by the ODBC driver/manager.

sqlcode

Numeric SQL error code as integer; these values are defined in the
ODBC Documentation and by the ODBC driver/manager.

messagetext

Message text as string explaining the error. These strings usually have
the format "[Vendor][Driver][Database] Message Text".

lineno

Line number in the mxODBC.c source code which generated the
message. This is very useful for support purposes.

81

http://msdn.microsoft.com/library/en-us/odbc/htm/dasdkodbcoverview.asp
http://msdn.microsoft.com/library/en-us/odbc/htm/dasdkodbcoverview.asp
http://msdn.microsoft.com/library/en-us/odbc/htm/dasdkodbcoverview.asp

mxODBC - Python ODBC Database Interface

9.4 Error Handlers

If you want to provide your own error handler, e.g. to mask database
warnings, you can do so by assigning to the .errorhandler attribute of
connections and cursors or passing a callback function to the connection
constructors at connection creation time using the errorhandler
keyword argument.

Error handlers are inherited from connections to cursors, so it normally
suffices to set an error handler on the connection object to have it take
affect for all subsequently created cursors.

Cursors created prior to setting the error handler on the connection will
not see or use the new error handler.

An error handler has to be a callable object taking the arguments
(connection, cursor, errorclass, errorvalue) where connection
is a reference to the connection, cursor a reference to the cursor (or None
in case the error does not apply to a cursor), errorclass is an error class
which to instantiate using errorvalue as construction argument.

The default handler will append the tuple (errorclass, errorvalue) to
the .messages list of the cursor or connection (if cursor is None) and then
raise the exception by instantiating errorclass with errorvalue.

Note that only database and ODBC driver/manager related errors are
processed through the error handlers. Other errors such as mxODBC
internal or AttributeErrors are not processed by these handlers.

9.4.1 Examples

Here's an example of an error handler that allows to flexibly ignore
warnings or only record messages.

Error handler configuration
record_messages_only = 0
ignore_warnings = 0

Error handler function
def myerrorhandler(connection, cursor, errorclass, errorvalue):

 """ Default mxODBC error handler.
 The default error handler reports all errors and warnings
 using exceptions and also records these in
 connection.messages as list of tuples (errorclass,
 errorvalue).

 """

82

9. mxODBC Exceptions and Error Handling

 # Append to messages list
 if cursor is not None:
 cursor.messages.append((errorclass, errorvalue))
 elif connection is not None:
 connection.messages.append((errorclass, errorvalue))

 # Ignore warnings
 if (record_messages_only or
 (ignore_warnings and
 issubclass(errorclass, mx.ODBC.Error.Warning))):
 return

 # Raise the exception
 raise errorclass, errorvalue

Installation of the error handler on the connection
connection.errorhandler = myerrorhandler

In case the connection or one of the cursors created from it cause an error,
mxODBC will call the myerrorhandler() function to let it decide what to
do about the error situation.

Possible error resolutions are to raise an exception, log the error in some
way, ignore it or to apply a work-around.

Typical use-cases for error handlers are situations where warnings need to
be masked or an application requires an on-demand reconnect.

If you need to catch errors or warnings at connection time, you can use the
optional keyword argument errorhandler to have the error handler
installed early enough to be able to deal with such errors or warnings:

connection = mx.ODBC.Windows.DriverConnect('DSN=test',
 errorhandler=myerrorhandler)

83

mxODBC - Python ODBC Database Interface

10. mxODBC Functions

mxODBC includes a few helper functions and generic APIs which aid in
everyday ODBC database programming or allow introspection at the ODBC
manager level. The next sections describe these functions in detail.

10.1 Subpackage Functions

For some subpackages, mxODBC also defines a few helpers which you can
use to query additional information from the ODBC driver or manager.
These are available through the subpackage, e.g. as
mx.ODBC.Windows.DataSources().

DataSources()

This helper function is only available for ODBC managers and some
ODBC drivers which have internal ODBC manager support, e.g. IBM's
DB2 ODBC driver, and allows you to query the available data sources.

It returns a dictionary mapping data source names to descriptions

Notes:

Older versions of unixODBC had a bug in some versions which makes
the manager only return information about data sources on the first call
to this function. Older versions of iODBC truncated the descriptions to
two characters.

getenvattr(option)

Returns the given ODBC environment option. This method interfaces
directly to the ODBC function SQLGetEnvAttr().

option must be an integer. Suitable option values are available through
the SQL singleton object.

The method returns the data as 32-bit integer. It is up to the caller to
decode the integer using the SQL defines.

This function is only available for ODBC 3.x compatible managers and
ODBC drivers.

setenvattr(option, value)

This function lets you set ODBC environment attributes which are
encoded as 32-bit integers.

84

10. mxODBC Functions

This method interfaces directly to the ODBC function
SQLSetEnvAttr().

option must be an integer. Suitable option values are available through
the SQL singleton object.

This function is only available for ODBC 3.x compatible managers and
ODBC drivers.

Note:
The function allows setting environment attributes which mxODBC
itself uses to define the way it interfaces to the database. Changing these
attributes can result in unwanted behavior or even segmentation faults.
USE AT YOUR OWN RISK !

statistics()

Returns a tuple (connections, cursors) stating the number currently
open connections and cursors for this subpackage.

Note that broken connections or cursors are not correctly counted.

10.2 mx.ODBC Functions

In addition to subpackage specific helpers, mxODBC also provides a few
additional functions available through the top-level mx.ODBC package.
These are:

format_resultset(cursor, headers=None, colsep=' | ', headersep='-',
stringify=repr)

Fetch the result set from cursor and format it into a list of strings (one
for each row):

 -header-
 -headersep-
 -row1-
 -row2-
 ...

headers may be given as list of strings. It defaults to the header names
from cursor.description. The function will add numbered columns
as appropriate if it finds more columns than given in headers.

Columns are separated by colsep; the header is separated from the
result set by a line of headersep characters.

The function calls stringify to format the value data returned by the
driver into a string. It defaults to repr().

85

mxODBC - Python ODBC Database Interface

print_resultset(cursor, headers=None)

Pretty-prints the current result set available through cursor.

See format_resultset() for details on formatting.

86

11. mxODBC Globals and Constants

11. mxODBC Globals and Constants

11.1 Subpackage Globals and Constants

Each mxODBC subpackage exports the following constants:

SQL

Singleton object which defines nearly all values available in the ODBC
3.5 header files. The "SQL_" part of the ODBC symbols is omitted, e.g.
SQL_AUTOCOMMIT is available as SQL.AUTOCOMMIT.

errorclass

Writeable dictionary mapping SQL error code strings (ODBC's
SQLSTATE) to exception objects used by the module.

If you need to specify your own SQLSTATE to exception class mappings,
you can assign to this dictionary. Changes will become visible
immediately.

sqltype

Dictionary mapping SQL type codes (these are returned in the type field
of cursor.description) to type strings. All natively supported SQL
type codes are included in this dictionary. The contents may vary
depending on whether the ODBC driver/manager defines these types or
not.

CHAR, VARCHAR, LONGVARCHAR, BINARY, VARBINARY, LONGVARBINARY,
TINYINT, SMALLINT, INTEGER, BIGINT, DECIMAL, NUMERIC, BIT, REAL,
FLOAT, DOUBLE, DATE, TIME, TIMESTAMP [, CLOB, BLOB, TYPE_DATE,
TYPE_TIME, TYPE_TIMESTAMP, UNICODE, UNICODE_LONGVARCHAR,
UNICODE_VARCHAR, WCHAR, WVARCHAR, WLONGVARCHAR]

ODBC 2.0 type code integers for the various natively supported SQL
types. These map to integers as returned in the type field of
cursor.description.

They are also available through the SQL singleton, e.g. SQL.CHAR. The
dictionary sqltype provides the inverse mapping.

The codes mentioned in square brackets are optional and only available
if the ODBC driver/manager supports a later ODBC version than 2.5.

87

mxODBC - Python ODBC Database Interface

Note that mxODBC has support for unknown SQL types: it returns
these types converted to strings. The conversion is done by the ODBC
driver and may be driver dependent.

threadsafety

Integer constant stating the level of thread safety the interface supports.
It is always set to 1, meaning that each thread must use its own
connection.

apilevel

String constant stating the supported DB API level. This is set to '2.0',
since mxODBC supports nearly all features of the DB API 2.0 standard.
Many DB API 1.0 features are still supported too for backward
compatibility.

paramstyle

String constant stating the type of parameter marker formatting
expected by the interface. This is set to 'qmark', since ODBC interfaces
always expect '?' to be used as positional placeholder for variables in
an SQL statement.

Parameters are bound to these placeholders in the order they appear in
the SQL statement, e.g. the first parameter is bound to the first question
mark, the second to the second and so on.

BIND_USING_SQLTYPE, BIND_USING_PYTHONTYPE

Integer values returned by connection.bindmethod.

SQL type binding means that the interface queries the database to find
out which conversion to apply and which input type to expect, while
Python type binding looks at the parameters you pass to the methods to
find out the type information and then lets the database apply any
conversions.

The bind method is usually set at compilation time, but can also differ
from database to database when accessing them via an ODBC manager.

DATETIME_DATETIMEFORMAT, PYDATETIME_DATETIMEFORMAT,
TIMEVALUE_DATETIMEFORMAT, TUPLE_DATETIMEFORMAT,
STRING_DATETIMEFORMAT

Integer values which are used by connection.datetimeformat and
cursor.datetimeformat.

mxODBC can handle different output formats for date/time values on a
per connection and per cursor basis. See the documentation of the two
attributes for more information.

88

11. mxODBC Globals and Constants

EIGHTBIT_STRINGFORMAT, MIXED_STRINGFORMAT, UNICODE_STRINGFORMAT,
NATIVE_UNICODE_STRINGFORMAT

Integer values which are used by connection.stringformat and
cursor.stringformat.

mxODBC can handle different string conversion methods on a per
connection and per cursor basis. See the documentation of the two
attributes for more information.

FLOAT_DECIMALFORMAT, DECIMAL_DECIMALFORMAT

Integer values which are used by connection.decimalformat and
cursor.decimalformat.

mxODBC can handle different output formats for numeric and decimal
database column types on a per connection and per cursor basis. See
the documentation of the two attributes for more information.

HAVE_UNICODE_SUPPORT

Integer flag which is either 0 or 1 depending on whether mxODBC was
compiled with Unicode support or not. Unicode support is available in
Python 2.0 and above and enabled per default.

license

String with the license information for the installed mxODBC license.

11.2 mx.ODBC Globals and Constants

At the top-level, the mx.ODBC package defines these globals and
constants:

Error, Warning, InterfaceError, DatabaseError, DataError,
OperationalError, IntegrityError, InternalError,
ProgrammingError, NotSupportedError

Exception objects used by the mxODBC subpackages. See section 9.
mxODBC Exceptions and Error Handling for details.

89

mxODBC - Python ODBC Database Interface

12. mx.ODBC Subpackages

This section includes specific notes for preconfigured subpackages and
setups.

12.1 Subpackage Notes

The following sections provide hints that apply to all mx.ODBC sub-
packages. Please read carefully.

12.1.1 Windows Platform Notes

You should always use the mx.ODBC.Windows subpackage and access the
databases through the MS ODBC Driver Manager. The other packages
provide Unix based interfaces to the databases.

12.1.2 Unix Platform Notes

Even though there are many subpackages for specific databases which then
sometimes provide more functionality for that particular database, we
would like to encourage the use of ODBC managers such as the iODBC or
unixODBC managers, since these provide the best flexibility in terms of
database setup and configuration.

Using ODBC managers also enables you to easily switch from local
databases to cross-network databases by adding additional tiers in-
between.

The binary distributions of mxODBC for Unix platforms usually only
contain the mx.ODBC.unixODBC and mx.ODBC.iODBC subpackages.

12.1.3 Compiling from Source

When compiling the package from source, you should always check the
paths and filenames used in the corresponding section of the distribution's

90

12. mx.ODBC Subpackages

mxODBC.py file because these depend on your specific ODBC
driver/manager installations.

You may also want to consult Paul Boddie's mxODBC Configuration page
which has some details about specific database backends he has used with
mxODBC.

12.2 mx.ODBC.Windows -- Windows ODBC Driver
Manager

Tested with Windows 95 - XP

mxODBC compiles on Windows using VC++ and links against the
Windows ODBC driver manager. The necessary import libs and header files
are included in the VC++ package but are also available for free in the
Microsoft ODBC SDK (now called MDAC SDK). Note that the latter is usually
more up-to-date.

12.2.1 Connecting to a Database

Always use the DriverConnect() API to connect to the data source if you
need to pass in extra configuration information such as names of log files,
etc.

12.2.2 Supported Datatypes

The subpackage defaults to SQL type binding mode (see the Datatypes
section for details), but reverts to Python type binding in case the
connection does not support the SQLDescribeParam() API. MS Access is
one candidate for which this API is not useable.

12.2.3 Issues with MS SQL Server

If you have troubles with multiple cursors on connections to MS SQL
Server the MS Knowledge Base Article 140896 INF: Multiple Active
Microsoft SQL Server Statements has some valuable information for you.

91

http://www.boddie.org.uk/python/mxODBC.html
http://www.microsoft.com/data/odbc/
http://www.microsoft.com/data/odbc/
http://msdn2.microsoft.com/en-us/data/aa937703.aspx

mxODBC - Python ODBC Database Interface

It seems that you'll have to force the usage of server side cursors to be able
to execute multiple statements on a single connection to MS SQL Server.
According to the article this is done by setting the connection option
SQL.CURSOR_TYPE to e.g. SQL.CURSOR_DYNAMIC:

dbc.setconnectoption(SQL.CURSOR_TYPE,SQL.CURSOR_DYNAMIC)

(thanks to Damien Morton for tracking this down and digging up the MS KB
article).

If you are experiencing problems with MS SQL Server not storing or
fetching international character data (Unicode, Asian encodings, etc.)
correctly, please have a look at the following MS Knowledge Base Articles:

• 232580 - INF: Storing UTF-8 Data in SQL Server

• 257668 - FIX: SQL Server ODBC Driver May Cause Incorrect Code
Conversion of Some Characters

• 234748 - PRB: SQL Server ODBC Driver Converts Language Events
to Unicode

More information about the MS SQL Server ODBC Driver and the various
connection parameters and options are available on the MSDN Library site:
MS SQL Server ODBC Driver Programmer's Guide.

If you are experiencing problems related to access violations, like e.g.

ProgrammingError: ('37000', 0, '[Microsoft][ODBC SQL Server
Driver]Syntax error or access violation', 4498)

a possible reason could be that you are using a function or stored
procedure which is generating output using PRINT or that it uses
RAISEERROR to report an error with the parameters or values.

Another possible reason is that the ODBC driver for SQL Server does not
support the syntax you are using or that bound parameters are not allowed
at that location in the SQL statement. As work-around you can use Python
string formatting to insert the data verbatim directly into the SQL
statement.

If you are using a transaction manager (e.g. MS DTC), you can sometimes
get warnings like the following:

mxODBC.Warning: ('01000', 7312, [Microsoft][ODBC SQL Server
Driver][SQL Server][OLE/DB provider returned message: New
transaction cannot enlist in the specified transaction
coordinator.]', 4606)

92

http://support.microsoft.com/kb/232580
http://support.microsoft.com/kb/257668
http://support.microsoft.com/kb/257668
http://support.microsoft.com/kb/234748
http://support.microsoft.com/kb/234748
http://msdn2.microsoft.com/en-us/library/ms714177.aspx

12. mx.ODBC Subpackages

This is a problem related to the used transaction manager rather than
mxODBC or the database. Please consult your DBA for help.

Note that even though the above exception is raised by the
cursor.execute() method, the fact that it is a warning suggests that the
executed operation was indeed executed on the cursor.

A general description of the problems you might experience when
accessing the MS SQL Server using ODBC is described in the article Using
ODBC with Microsoft SQL Server. Even though it's dated September 1997 it
provides some insights into the design and workings of the MS SQL ODBC
driver.

12.2.4 File Data Sources

If you want to connect to a file data source (without having to configure it
using the ODBC manager), you can do so by using the FILEDSN=
parameter instead of the DSN= parameter:

DriverConnect('FILEDSN=test.dsn;UID=test;PWD=test')

This is sometimes useful when you want to dynamically setup a data
source, e.g. a MS Access database.

For more information about the FILEDSN-keyword and the other Windows
ODBC manager features, see the Microsoft SQLDriverConnect()
documentation.

Also note that ODBC drivers working on single files, e.g. the MS Excel file
driver, usually do not support transactions. mxODBC will not clear auto-
commit for these drivers (it may sometimes still be necessary to set the
clear_auto_commit flag in the connect constructors to 0).

12.3 mx.ODBC.iODBC -- iODBC Driver Manager

Tested with iODBC 3.52.5

iODBC is an Open Source ODBC manager for Unix maintained by
OpenLink. It compiles against mxODBC without problems and is the
preferred way of talking to an ODBC data source from Unix using
mxODBC.

93

http://msdn2.microsoft.com/en-us/library/ms811006.aspx
http://msdn2.microsoft.com/en-us/library/ms811006.aspx
http://msdn2.microsoft.com/en-us/library/ms715433.aspx
http://msdn2.microsoft.com/en-us/library/ms715433.aspx
http://www.iodbc.org/
http://www.openlinksw.com/

mxODBC - Python ODBC Database Interface

Notes:

• Always use the DriverConnect() API to connect to the data
source if you need to pass in extra configuration information such
as names of log files, etc.

• Note: When interfacing to MySQL using the MySQL ODBC driver,
we have observed problems with using Unicode statements passed
to cursor.execute() when using iODBC 3.52.5. These problems
appear to be related to iODBC. As work-around, you can use
unixODBC, which works fine with Unicode statements.

• Hint: You may experience problems when trying to connect to
MySQL via MyODBC hooked to iODBC in case you are using the
binary RPMs available from www.mysql.com. For some reason, the
MyODBC driver does not reference the MySQL shared libs it needs
to connect to the MySQL server and there's no way to tell iODBC
to load two shared libs. Here's a hack which will allow you to
create an import lib which solves the problem on Linux:

rm -f /usr/local/lib/libmyodbc.so
ld -shared --whole-archive \

/usr/local/lib/libmyodbc-2.50.34.so \
 /usr/lib/libmysqlclient.so.10 \
 -o /usr/local/lib/libmyodbc.so
ldconfig

 Notes regarding 64-bit Platforms:

• You may run into problems with iODBC since it uses 64-bit SQL
Unicode types. Most ODBC drivers follow the Windows standard
of using 32-bit Unicode types. Support for Unicode with iODBC is
therefore limited.

• You may also run into problems with ODBC drivers compiled
against unixODBC. While iODBC follows the ODBC standard of
using 64-bit SQL length types, unixODBC has only recently
(starting with version 2.2.13) switched to these longer types. As a
result ODBC drivers compiled against older versions of unixODBC
will not work reliably with iODBC.

• Commercial ODBC drivers for Unix are often compiled using 64-
bit SQL length types and 32-bit Unicode types. iODBC uses 64-bit
types for both.

94

http://www.mysql.com/

12. mx.ODBC Subpackages

12.4 mx.ODBC.unixODBC -- unixODBC Driver Manager

Tested with unixODBC 2.2.12

unixODBC is an alternative Open Source ODBC manager for originally
designed for Linux and later extended to other Unixes maintained by
EasySoft. It compiles against mxODBC without problems.

Notes:

• Always use the DriverConnect() API to connect to the data
source if you need to pass in extra configuration information such
as names of log files, etc.

• Even though unixODBC does support Unicode data to some
extent, there are bugs in unixODBC <= 2.0.7 which will result in
random core dumps due to memory being overwritten during the
conversion of 8-bit to Unicode data. Later versions of unixODBC
may not have this problem, so you should check by running the
mx.ODBC.Misc.test script in continuous mode against your
version.

 Notes regarding 64-bit Platforms:

• On 64-bit platforms you may run into problems with unixODBC
since it uses 32-bit SQL length types for versions prior to 2.2.13.
Some ODBC drivers on Unix instead use 64-bit SQL length values
and will therefore not return correct results when used with
unixODBC.

• You may run into problems with ODBC drivers compiled against
iODBC. While unixODBC follows the ODBC standard of using 32-
bit Unicode types, iODBC defaults to using the Unix 64-bit
standard. As a result, ODBC drivers compiled against iODBC will
not work reliably with Unicode data when used with unixODBC.

• Commercial ODBC drivers for Unix are often compiled using 64-
bit SQL length types and 32-bit Unicode types. unixODBC uses the
same types starting with version 2.3.

95

http://www.unixodbc.org/
http://www.easysoft.com/

mxODBC - Python ODBC Database Interface

12.5 ODBC Driver Subpackages

The following subpackages are specific to certain ODBC drivers against
which mxODBC can be linked directly.

If possible, please use one of the above ODBC managers for connecting to
databases, since these often reduce the number of problems you can run
into when setting up an ODBC connection.

Note binary distributions of mxODBC usually don't contain any additional
subpackages for specific drivers. Only the ODBC manager packages for
the platform are included. However, driver specific subpackages can be
made available on request. Please write to support@egenix.com for
details.

12.5.1 mx.ODBC.Adabas -- SuSE Adabas D

Tested with Adabas 6.1.1

The SuSE Linux distribution ships with a free personal edition of Adabas
(available in form of RPMs from SuSE). A commercial version is also
available, but we suggest first trying the personal edition.

If you want to trim down the interface module size, try linking against a
shared version of the static ODBC driver libraries. You can create a pseudo-
shared lib by telling the linker to wrap the static ones into a single shared
one:

ld -shared --whole-archive odbclib.a libsqlrte.a libsqlptc.a \
 -lncurses -o /usr/local/lib/libadabasodbc.so

Note:
The ADABAS ODBC driver returns microseconds in the timestamp fraction
field. Because of this the Setup includes a define to do the conversion to
seconds using a microseconds scale instead of the ODBC standard
nanosecond scale.

Since the ODBC driver for Adabas on Linux also provides the
DriverConnect() API it is also exposed by the package (even though the
driver itself is not an ODBC manager).

96

mailto:support@egenix.com
http://www.suse.de/
ftp://ftp.gwdg.de/pub/linux/cdroms/suse/5.2/suse/pay1/
http://www.suse.de/

12. mx.ODBC Subpackages

12.5.2 mx.ODBC.DB2 -- IBM DB2 Universal Database

Tested with IBM DB2 9.1

IBM provides a free express edition of the powerful DB2 database engine
which happens to use ODBC as native C level interface.

This package interfaces directly to the ODBC driver included in the Unix
edition of the database. If you want to access DB2 from Windows NT, you
can use the Windows subpackage of mxODBC.

There is one catch you should watch out for: in order to connect to the IBM
DB2 database the DB2INSTANCE environment variable must be set to the
name of the DB2 instance you would like to connect to.

There may be more environment variables needed, please check the scripts
that come with DB2 called db2profile (for bash) or db2cshrc (for C
shell) which set the environment variables. Without having these set,
mxODBC will fail to load and give you a traceback:

Traceback (most recent call last):
...
 from mxODBC import *
ImportError: initialization of module mxODBC failed
(mxODBC.InterfaceError:failed to retrieve error information (line
6778,
rc=-1))

Unfortunately, the provided shell scripts are sometimes buggy, so simply
sourcing them won't do any good; you will have to carefully create your
own. A typical problem is that the scripts set LIBPATH or
LD_LIBRARY_PATH which then causes the following traceback when trying
to load mxODBC:

Traceback (most recent call last):
...
ImportError: from module mxODBC.so No such file or directory

Also note that DB2 needs to be explicitly told that you want to connect to
the database using ODBC. This is done by binding the IBM CLI driver
against the database. Please consult the IBM DB2 documentation for
details.

If you want to use the DriverConnect() API, you'll have to configure the
IBM ODBC driver's data source INI file which is named db2cli.ini and
usually found in the same directory as the above script files.

97

http://www.ibm.com/

mxODBC - Python ODBC Database Interface

12.5.3 mx.ODBC.DBMaker -- CASEMaker's DBMaker Database

Tested with DBMaker 3.71

DBMaker has a small lean and mean SQL database that comes with an
ODBC driver. This subpackage interfaces directly to that ODBC driver.

Note:
DBMaker's ODBC driver doesn't have all the advertised SQL catalog
functions (the privilege functions are missing) and also doesn't support the
.nativesql() method. It does provide a DriverConnect() API, which
might be useful for connecting to databases across a network.

mxODBC currently does not support the use of file object for in- and
output of large objects. This may change in a future version though (the
needed techniques are already in place).

The subpackage links against the DBMaker driver without problems.
Testing has only been preliminary though, but since even CASEMaker
advertises mxODBC as Python interface for DBMaker, you should be on
the safe side.

12.5.4 mx.ODBC.EasySoft -- EasySoft ODBC-ODBC Bridge

Tested with ODBC-ODBC bridge 1.4.x

EasySoft has developed an ODBC-ODBC bridge which allows you to
connect to any remote ODBC driver, e.g. you can access MS SQL Server
running on an NT box from your Linux web-server.

You can download it via the product page or via FTP as trial version. The
personal editions are said to available for free in the near future. Remember
to download setups for client (Linux in the example) and server (NT in the
example).

It is recommended to use the bridge with unixODBC. Starting with version
1.4.2 of the bridge, there is full functional Unicode support available if the
target ODBC driver supports this (the latest MS SQL Server and MS Access
drivers do).

12.5.5 mx.ODBC.FreeTDS -- FreeTDS ODBC Driver for MS SQL Server and Sybase
ASA

Tested with FreeTDS 0.82 compiled against unixODBC

98

http://www.dbmaker.com/
http://www.easysoft.com/
http://www.easysoft.com/products/oob/main.phtml
http://www.easysoft.com/products/oob/main.phtml
ftp://ftp.easysoft.com/pub/odbc-odbc-bridge/
http://www.freetds.org/
http://www.freetds.org/

12. mx.ODBC Subpackages

The FreeTDS ODBC driver implements the client side of the TDS wire
protocol used by Sybase ASA and Microsoft SQL Server installations. It
allows you to directly connect to a SQL Server database from a Unix
machine.

mxODBC compiles against the current FreeTDS release available from the
www.FreeTDS.org site, but since the driver is not fully developed yet, only
very basic operations are supported.

Notes:

• The FreeTDS website mentions that the driver has some
restrictions. There are other ODBC drivers available from
commercial vendors which implement the full ODBC3 API, e.g.
from OpenLink and Data-Direct, which work well with mxODBC.

• Here is a sample setup for FreeTDS on Linux talking to MS SQL
Server 2000 on Windows. In the test we used a Linux box talking to
a Windows machine over a network:

Add this section to /usr/local/freetds/etc/freetds.conf (the
freetds.conf configuration file may be in a different location on your
machine):

MS SQL Server 2000 running on server MONET
[MONET]
host = monet.example.net
port = 1433
tds version = 8.0

Add this section to /etc/odbc.ini (the odbc.ini configuration file
may be in a different location on your machine):

[mssql]
Driver = /usr/local/freetds/lib/libtdsodbc.so
Description = MS SQL Server 2000 running on Monet
Trace = No
Servername = MONET
Database = tempdb

Note that the libtdsodbc.so file may be located in a different
directory on your machine.

12.5.6 mx.ODBC.Informix -- Informix SQL Server

Unsupported contribution

Informix for Unix doesn't come with Unix ODBC drivers, but there a few
source for these: Informix sells the driver under the term "Informix CLI";
Data-Direct and OpenLink also support Informix through their driver suites.

99

http://www.freetds.org/
http://www.informix.com/

mxODBC - Python ODBC Database Interface

Note: There is also a free Informix SDK available for a few commercial Unix
platforms like HP-UX and Solaris. It includes the needed ODBC libs and
header files (named infxcli.h and libifsql.a).

Once you have installed the ODBC drivers following the vendor's
instructions, enable the appropriate set of directives in Setup, run make -f
Makefile.pre.in boot in the Informix/ subdirectory, and then run
make to finish the compilation.

To use the OpenLink driver setup instead copy Setup.in to Setup and
enable the OpenLink section in Setup before compiling.

Gilles Lenfant emailed us these instructions which you might find useful in
setting up the Informix subpackage:

In addition to the change to Setup (or Setup.in) file edition before the
"make -f Makefile.pre.in boot", I made it compile and run with the
following changes in the Informix section of the "Setup" file (according to
the latest "Informix ODBC Driver Programmer's Manual").

Note that this book must be read carefully for the setup of the Informix
related environment variables: The user must have $INFORMIXDIR
(informix client software root) set. and his LD_LIBRARY_PATH must
include
"$INFORMIXDIR/lib:$INFORMIXDIR/lib/esql:$INFORMIXDIR/lib/cli"

Compiling mxODBC requires Informix client SDK (compile time free
download from intraware.com) and ESQL/C libraries (client run-time
libraries provided with the server CD - not free).

In addition, fixes and tuning must be done in
$INFORMIXDIR/etc/odbcinst.ini, and the user must configure his data
sources in $HOME/.odbc.ini or $ODBCINI file.

12.5.7 mx.ODBC.MySQL -- MySQL + MyODBC

Tested with MyODBC 2.50.36 and MySQL Connector ODBC 3.51.20

MySQL is a SQL database for Unix and Windows platforms developed by
TCX. It is free for most types of usage (see their FAQ for details) and offers
good performance and stability. To download MySQL and the ODBC driver
MyODBC, check the www.mysql.com website.

There is one particularity with the ODBC driver for MySQL: all input
parameters are being processed as string -- even integers and floats. The
ODBC driver implements the necessary conversions. mxODBC uses the

100

http://www.intraware.com/
http://www.tcx.se/
http://www.mysql.com/

12. mx.ODBC Subpackages

Python Type binding method to bind the input parameters; see the Python
Type Input Binding section 7.3 for more details.

Depending on your MySQL setup (whether you use a transactional storage
backend or not), clearing the auto-commit flag at connection time, which is
normally done per default by the connection constructors, will not work.
The subpackage uses auto-commit mode as default. You can turn this
workaround off by editing the distribution's setup.py and removing the
switch DONT_CLEAR_AUTOCOMMIT e.g. if you are using a MySQL 4.x or
5.x version with transactions enabled.

When using the MyODBC RPMs available from www.mysql.com, please be
sure to also have the MySQL shared libs RPM and the MySQL development
RPM installed.

Important:
Some MySQL + MyODBC setups we have tested showed some serious
memory leaks on Linux machines; please check your setup using the
included mx/ODBC/Misc/test.py script for leaks. There are no known leaks
in mxODBC itself.

12.5.8 mx.ODBC.Oracle -- Oracle

Unsupported contribution

Oracle for Unix doesn't ship with Unix ODBC drivers. You can get them
from Data-Direct or OpenLink.

Once you have installed the ODBC drivers following the vendor's
instructions, run make -f Makefile.pre.in boot in the Oracle/
subdirectory, enable the appropriate set of directives in Setup and then run
make to finish the compilation.

Using Data-Direct drivers is reported to work. Shawn Dyer (irin.com) has
kindly provided the setup for this combination and some additional notes:

...we also set the following environment variables:
LD_LIBRARY_PATH= both the oracle lib path and the Data-Direct
library path
ODBCINI= the odbc.ini file in the Data-Direct install

Once you talk to the Data-Direct ODBC driver, it seems to be a simple
matter of setting up the ODBC data source name in their .ini file that has
that stuff. At that point you can talk to any of their ODBC drivers you have
installed.

To use the OpenLink driver setup instead, copy Setup.in to Setup and
enable the OpenLink section in Setup before compiling.

101

http://www.mysql.com/

mxODBC - Python ODBC Database Interface

12.5.9 mx.ODBC.PostgreSQL -- PostgreSQL

Tested with PostgreSQL 8.2.3 and the psqlodbc driver 08.02.0200.

PostgreSQL is a free SQL database for Unix. This subpackage is for linking
directly against the PostgreSQL ODBC driver on Unix. An alternative setup
would be connecting to the database via one of the Unix ODBC managers
iODBC or unixODBC also supported by mxODBC.

Because of deficiencies in the PostgreSQL ODBC drivers, the package
operates in Python type binding mode. The ODBC driver still has serious
problems with data conversion, e.g. it doesn't properly quote binary data
and has problems dealing with large objects (BLOBs). It does support
smaller strings, numbers and date/time values.

Note: Connecting to a PostgreSQL database from Windows using the
PostgreSQL Windows ODBC Driver through the Windows ODBC Manager
was reported to work fine.

12.5.10 mx.ODBC.SAPDB -- SAP DB

Tested with SAP DB 7.4

SAP DB is a free Open Source, high-performance and fully SQL-92
compliant database made available by SAP which originated from a branch
of Adabas D. There are binary versions available for all major platforms and
all come with ODBC drivers.

This subpackage is preconfigured to link against the Linux version of the
ODBC driver.

Since the ODBC driver for SAP DB also provides the DriverConnect() API
it is also exposed by the package (even though the driver itself is not an
ODBC manager).

MaxDB, the successor to SAPDB is also support by mxODBC. You can
use the mx.ODBC.SAPDB package to connect to the MaxDB ODBC
driver or one of the ODBC manager packages available in mxODBC.

12.5.11 mx.ODBC.Solid -- Solid Server

Tested with Solid Embedded Engine SDK 3.52

102

http://www.postgresql.org/
http://www.sapdb.org/
http://www.maxdb.org/
http://www.solidtech.com/

12. mx.ODBC Subpackages

Solid Tech. offers an embedded database engine for many different
platforms. More information about prices, licenses and downloads is
available on their website.

The Solid Server's low-level database API uses ODBC as interface standard
(most other vendors have proprietary interfaces), so mxODBC should
deliver the best performance possible.

Note that Unicode with Solid only works if you link directly against the
driver. Accessing Solid through an ODBC manager such as unixODBC or
iODBC currently mangles the data because Solid uses 4 bytes to store a
character while the ODBC managers use 2.

The Solid ODBC driver only supports scrolling in increments of 1.
mxODBC tries to emulate most other modes, but not all work, e.g. you
can't scroll out of the result and then back in again.

12.5.12 mx.ODBC.SybaseASA -- Sybase Adaptive Server Anywhere

Unsupported contribution

Sybase Adaptive Server Anywhere comes with its own ODBC driver against
which mxODBC can link directly. The included Setup is for version 7 of the
server.

In case you are running Linux, Sybase has some information on its web-site
about the ASA ODBC driver and its setup on Linux. This whitepaper should
also be of interest.

You can also use the OpenLink drivers for Sybase ASA: copy Setup.in to
Setup and enable the OpenLink section in Setup before compiling.

In any case, you should also consult Paul Boddie's mxODBC Configuration
page for the Sybase Adaptive Server Anywhere. It includes valuable
information about the setup.

Thanks to Paul Boddie and Sam Rushing for helping in getting the package
together.

12.5.13 mx.ODBC.SybaseASE -- Sybase Adaptive Server Enterprise

Unsupported contribution

103

http://www.solidtech.com/
http://www.sybase.com/
http://www.sybase.com/linux/
http://my.sybase.com/detail?id=1002649
http://www.sybase.com/detail/1,3693,1008930,00.html
http://www.paul.boddie.net/Python/mxODBC.html
http://www.sybase.com/

mxODBC - Python ODBC Database Interface

Note that you will first have to get the Sybase ASE ODBC drivers from
Data-Direct (formerly Merant) in order to use this subpackage -- Sybase
ASE does not include ODBC drivers (it's a completely different product than
Sybase ASA). This whitepaper has some details about ODBC connectivity of
ASE.

Gary Pennington from Sun Microsystems reported that the Data-Direct
(formerly Merant) evaluation drivers work with Sybase Adaptive Server 11.5
on Solaris 2.6.

You can also use the OpenLink drivers for Sybase ASE: copy Setup.in to
Setup and enable the OpenLink section in Setup before compiling.

In any case, you should also consult Paul Boddie's mxODBC Configuration
page for the Sybase Adaptive Server Enterprise version. It includes valuable
information about the setup.

104

http://www.sybase.com/detail/1,3693,1008930,00.html
http://www.paul.boddie.net/Python/mxODBC.html

13. Hints & Links to other Resources

13. Hints & Links to other Resources

13.1 Running mxODBC from a CGI script

ODBC drivers and managers are usually compiled as a shared library.
When running CGI scripts most HTTP daemons (or web servers) don't pass
through the path for the dynamic loader (e.g. LD_LIBRARY_PATH) to the
script, thus importing the mxODBC C extension will fail with unresolved
symbols because the loader doesn't find the ODBC driver/manager's libs.

To have the loader find the path to those shared libs you can either wrap
the Python script with a shell script that sets the path according to your
system configuration or tell the HTTP daemon to set or pass these through
(see the daemon's documentation for information on how to do this; for
Apache the directives are named SetEnv and PassEnv).

13.2 Freezing mxODBC using py2exe

Thomas Heller has written a great tool which is based on distutils. The tool
allows you to freeze your application into a single standalone Windows
application and is called py2exe.

Note:
Freezing mxODBC together with an application and redistributing the
resulting executables requires that you have obtained developer licenses
from eGenix.com permitting you to redistribute mxODBC along with a
product. Please see the License section for more information.

When freezing mxODBC you may experience problems with py2exe related
to py2exe not finding the DLLs needed by mxODBC. In this case you have
to help py2exe to find the correct subpackage for Windows, ie.
mx.ODBC.Windows and mx.DateTime. This can be done by adding -i
mx.ODBC.Windows,mx.DateTime to the py2exe command line:

python py2exe -i mx.ODBC.Windows,mx.DateTime yourapp.py

105

http://starship.python.net/crew/theller/py2exe/

mxODBC - Python ODBC Database Interface

After doing so, py2exe should have no problem finding the files
mxODBC.pyd and mxDateTime.pyd needed by mx.ODBC.Windows and
mx.DateTime.

mxODBC also uses the md5 or hashlib module (depending on the Python
version) and the license module mx.ODBC.license internally. You will have
to add them to the above list, if you run into license verification problems
when running the py2exe compiled application.

13.3 More Sources of Information

There are several resources available online that should help you getting
started with ODBC. Here is a small list of links useful for further reading:

Microsoft MDAC Site

Microsoft is constantly developing new forms of database access. For a
close up on what they have come up recently take a look at their ODBC
site. Note that they now call their ODBC SDK "Microsoft Data Access
Components SDK" (MDAC). It does not only focus on ODBC but also on
OLE DB and ADO.

Note: If you are not happy about the size of the SDK download (over
31MB), you can also grab the older 3.0 SDK which might still be available
from a FTP server. Look for "odbc3sdk.exe" using e.g. FTP Search.

Microsoft also supports a whole range of (desktop) ODBC drivers for
various databases and file formats. These are available under the name
"ODBC Desktop Database Drivers" (search the MS web-site for the exact
URL) [wx1350.exe] and also included in the more up-to-date "Microsoft
Data Access Components" (MDAC) archive [mdac_typ.exe].

Microsoft ODBC Portal

This portal page has a few interesting links into the Microsoft ODBC site. If
you're looking for the latest SQL Server or Oracle ODBC drivers this is the
place to look first.

ODBC Documentation

The ODBC documentation is included in the free MS MDAC SDK which
you can download from their ODBC site.

SQLSummit List of ODBC drivers

106

http://msdn2.microsoft.com/en-us/data/aa937703.aspx
http://ftpsearch.lycos.com/
http://msdn2.microsoft.com/en-us/library/ms710252.aspx
http://msdn2.microsoft.com/en-us/library/ms714177.aspx
http://msdn2.microsoft.com/en-us/library/ms710252.aspx
http://www.sqlsummit.com/ODBCVend.htm

13. Hints & Links to other Resources

A collection of available ODBC driver packages. This should be the first
place to look in case you are searching for OBDC connectivity to your
database.

107

mxODBC - Python ODBC Database Interface

14. Examples

Here is a very simple example of how to use mxODBC. More elaborate
examples of using Python Database API compatible database interfaces can
be found in the Database Topic Guide on http://www.python.org/. Andrew
Kuchling's introduction to the Python Database API is an especially good
reading. There are also a few books on using Python DB API compatible
interfaces, some of them cover mxODBC explicitly.

On Unix:

>>> import mx.ODBC.iODBC
>>> db =
mx.ODBC.iODBC.DriverConnect('DSN=database;UID=user;PWD=passwd')
>>> c = db.cursor()
>>> c.execute('select count(*) from test')
>>> c.fetchone()
(305,)
>>> c.tables(None,None,None,None)
8
>>> mx.ODBC.print_resultset(c)
Column 1 | Column 2 | Column 3 | Column 4 | Column 5

'' | '' | 'test' | 'TABLE' | 'MySQL table'
'' | '' | 'test1' | 'TABLE' | 'MySQL table'
'' | '' | 'test4' | 'TABLE' | 'MySQL table'
'' | '' | 'testblobs' | 'TABLE' | 'MySQL table'
'' | '' | 'testblobs2' | 'TABLE' | 'MySQL table'
'' | '' | 'testdate' | 'TABLE' | 'MySQL table'
'' | '' | 'testdates' | 'TABLE' | 'MySQL table'
'' | '' | 'testdatetime' | 'TABLE' | 'MySQL table'
>>> c.close()
>>> db.close()
>>>

On Windows:

>>> import mx.ODBC.Windows
>>> db =
mx.ODBC.Windows.DriverConnect('DSN=database;UID=user;PWD=passwd')
>>> c = db.cursor()
>>> c.execute('select count(*) from test')
>>> c.fetchone()
(305,)
>>> c.tables(None,None,None,None)
8
>>> mx.ODBC.print_resultset(c)
Column 1 | Column 2 | Column 3 | Column 4 | Column 5

'' | '' | 'test' | 'TABLE' | 'MySQL table'
'' | '' | 'test1' | 'TABLE' | 'MySQL table'
'' | '' | 'test4' | 'TABLE' | 'MySQL table'
'' | '' | 'testblobs' | 'TABLE' | 'MySQL table'
'' | '' | 'testblobs2' | 'TABLE' | 'MySQL table'
'' | '' | 'testdate' | 'TABLE' | 'MySQL table'
'' | '' | 'testdates' | 'TABLE' | 'MySQL table'
'' | '' | 'testdatetime' | 'TABLE' | 'MySQL table'

108

http://www.python.org/topics/database/
http://www.amk.ca/python/writing/DB-API.html
http://www.amk.ca/python/writing/DB-API.html

14. Examples

>>> c.close()
>>> db.close()
>>>

As you can see, mxODBC has the same interface on Unix and Windows
which makes it an ideal basis for writing cross-platform database
applications.

Note:
When connecting to a database with transaction support, you should
explicitly do a .rollback() or .commit() prior to closing the
connection. In the example this was omitted since the database backend
MySQL does not support transactions.

109

mxODBC - Python ODBC Database Interface

15. Testing the Database Connection

The package includes a test script that checks some of the database's
features. As side effect this also provides a good regression test for the
mxODBC interface.

To start the test, simply run the script in mx/ODBC/Misc/test.py.

python mx/ODBC/Misc/test.py

The script will generate a few temporary tables (named mxODBC0001,
mxODBC0002, etc; no existing tables will be overwritten) and then test the
interface - database communication including many database related
features such as data types and support of various SQL dialects. The tables
are automatically removed after the tests have run through.

110

16. mxODBC Package Structure

16. mxODBC Package Structure

This is the Python package structure setup when installing mxODBC:

[ODBC]
 [Adabas]
 dbi.py
 dbtypes.py
 showdb.py
 [DB2]
 dbi.py
 dbtypes.py
 [DBMaker]
 dbi.py
 dbtypes.py
 Doc/
 [EasySoft]
 dbi.py
 dbtypes.py
 [Informix]
 dbi.py
 dbtypes.py
 [Misc]
 proc.py
 test.py
 [MySQL]
 dbi.py
 dbtypes.py
 [Oracle]
 dbi.py
 dbtypes.py
 [PostgreSQL]
 dbi.py
 dbtypes.py
 [SAPDB]
 dbi.py
 dbtypes.py
 [Solid]
 dbi.py
 dbtypes.py
 [SybaseASA]
 dbi.py
 dbtypes.py
 [SybaseASE]
 dbi.py
 dbtypes.py
 [Windows]
 dbi.py
 dbtypes.py
 [iODBC]
 dbi.py
 dbtypes.py
 [mxODBC]
 dbi.py
 dbtypes.py
 [unixODBC]
 dbi.py
 dbtypes.py
 LazyModule.py

111

mxODBC - Python ODBC Database Interface

 ODBC.py

Entries enclosed in brackets are packages (i.e. they are directories that
include a __init__.py file). Ones with slashes are just simple
subdirectories that are not accessible via import.

112

17. Support

17. Support

eGenix.com is providing commercial support for this package, including
adapting it to special needs for use in customer projects. If you are
interested in receiving information about this service please see the
eGenix.com Support Conditions.

113

http://www.egenix.com/files/python/eGenix-mx-Extensions.html

mxODBC - Python ODBC Database Interface

18. Copyright & License

© 1997-2000, Copyright by IKDS Marc-André Lemburg; All Rights
Reserved. mailto: mal@lemburg.com

© 2000-2010, Copyright by eGenix.com Software GmbH, Langenfeld,
Germany; All Rights Reserved. mailto: info@egenix.com

This software is covered by the eGenix.com Commercial License
Agreement, which is included in the following section. The text of the
license is also included as file "LICENSE" in the package's main directory.

Please note that using this software in a commercial environment is not
free of charge. You may use the software during an evaluation period as
specified in the license, but subsequent use requires the ownership of a
"Proof of Authorization" which you can buy online from eGenix.com.

Please see the eGenix.com mx Extensions Page for details about the license
ordering process.

By downloading, copying, installing or otherwise using the software, you
agree to be bound by the terms and conditions of the following eGenix.com
Commercial License Agreement.

114

mailto:mal@lemburg.com
mailto:info@egenix.com
http://www.egenix.com/
http://www.egenix.com/files/python/eGenix-mx-Extensions.html

18. Copyright & License

EGENIX.COM COMMERCIAL LICENSE AGREEMENT

Version 1.2.0

1. Introduction

This “License Agreement” is between eGenix.com Software, Skills and
Services GmbH (“eGenix.com”), having an office at Pastor-Loeh-Str. 48, D-
40764 Langenfeld, Germany, and the Individual or Organization
(“Licensee”) accessing and otherwise using this software in source or
binary form and its associated documentation (“the Software”).

2. Terms and Definitions

The “Software” covered under this License Agreement includes without
limitation, all object code, source code, help files, publications,
documentation and other programs, products or tools that are included in
the official “Software Distribution” available from eGenix.com.

The “Proof of Authorization” for the Software is a written and signed notice
from eGenix.com providing evidence of the extent of authorizations the
Licensee has acquired to use the Software and of Licensee’s eligibility for
future upgrade program prices (if announced) and potential special or
promotional opportunities. As such, the Proof of Authorization becomes
part of this License Agreement.

Installation of the Software (“Installation”) refers to the process of
unpacking or copying the files included in the Software Distribution to an
Installation Target.

“Installation Target” refers to the target of an installation operation. Targets
are defined as follows:

1) “CPU” refers to a central processing unit which is able to store
and/or execute the Software (a server, personal computer, or other
computer-like device) using at most two (2) processors,

2) “Site” refers to a single site of a company,
3) “Corporate” refers to an unlimited number of sites of the company,
4) “Developer CPU” refers to a single CPU used by at most one (1)

developer.

When installing the Software on a server CPU for use by other CPUs in a
network, Licensee must obtain a License for the server CPU and for all
client CPUs attached to the network which will make use of the Software
by copying the Software in binary or source form from the server into their

115

mxODBC - Python ODBC Database Interface

CPU memory. If a CPU makes use of more than two (2) processors,
Licensee must obtain additional CPU licenses to cover the total number of
installed processors. Likewise, if a Developer CPU is used by more than
one developer, Licensee must obtain additional Developer CPU licenses to
cover the total number of developers using the CPU.

“Commercial Environment” refers to any application environment which is
aimed at directly or indirectly generating profit. This includes, without
limitation, for-profit organizations, private educational institutions, work as
independent contractor, consultant and other profit generating relationships
with organizations or individuals. Governments and related agencies or
organizations are also regarded as being Commercial Environments.

“Non-Commercial Environments” are all those application environments
which do not directly or indirectly generate profit. Public educational
institutions and officially acknowledged private non-profit organizations are
regarded as being Non-Commercial Environments in the aforementioned
sense.

“Educational Environments“ are all those application environments which
directly aim at educating children, pupils or students. This includes, without
limitation, class room installations and student server installations which
are intended to be used by students for educational purposes. Installations
aimed at administrational or organizational purposes are not regarded as
Educational Environment.

3. License Grant

Subject to the terms and conditions of this License Agreement, eGenix.com
hereby grants Licensee a non-exclusive, world-wide license to

1) use the Software to the extent of authorizations Licensee has
acquired and

2) distribute, make and install copies to support the level of use
authorized, providing Licensee reproduces this License Agreement
and any other legends of ownership on each copy, or partial copy, of
the Software.

If Licensee acquires this Software as a program upgrade, Licensee’s
authorization to use the Software from which Licensee upgraded is
terminated.

Licensee will ensure that anyone who uses the Software does so only in
compliance with the terms of this License Agreement.

Licensee may not

1) use, copy, install, compile, modify, or distribute the Software except

116

18. Copyright & License

as provided in this License Agreement;
2) reverse assemble, reverse engineer, reverse compile, or otherwise

translate the Software except as specifically permitted by law without
the possibility of contractual waiver; or

3) rent, sublicense or lease the Software.

4. Authorizations

The extent of authorization depends on the ownership of a Proof of
Authorization for the Software.

Usage of the Software for any other purpose not explicitly covered by this
License Agreement or granted by the Proof of Authorization is not
permitted and requires the written prior permission from eGenix.com.

5. Modifications

Software modifications may only be distributed in form of patches to the
original files contained in the Software Distribution.

The patches must be accompanied by a legend of origin and ownership and
a visible message stating that the patches are not original Software
delivered by eGenix.com, nor that eGenix.com can be held liable for
possible damages related directly or indirectly to the patches if they are
applied to the Software.

6. Experimental Code or Features

The Software may include components containing experimental code or
features which may be modified substantially before becoming generally
available.

These experimental components or features may not be at the level of
performance or compatibility of generally available eGenix.com products.
eGenix.com does not guarantee that any of the experimental components
or features contained in the eGenix.com will ever be made generally
available.

7. Expiration and License Control Devices

Components of the Software may contain disabling or license control
devices that will prevent them from being used after the expiration of a
period of time or on Installation Targets for which no license was obtained.

117

mxODBC - Python ODBC Database Interface

Licensee will not tamper with these disabling devices or the components.
Licensee will take precautions to avoid any loss of data that might result
when the components can no longer be used.

8. NO WARRANTY

eGenix.com is making the Software available to Licensee on an “AS IS”
basis. SUBJECT TO ANY STATUTORY WARRANTIES WHICH CAN NOT BE
EXCLUDED, EGENIX.COM MAKES NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, EGENIX.COM MAKES NO AND DISCLAIMS ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE
WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

9. LIMITATION OF LIABILITY

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO
EVENT SHALL EGENIX.COM BE LIABLE TO LICENSEE OR ANY OTHER
USERS OF THE SOFTWARE FOR (I) ANY INCIDENTAL, SPECIAL, OR
CONSEQUENTIAL DAMAGES OR LOSS (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER
PECUNIARY LOSS) AS A RESULT OF USING, MODIFYING OR
DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF; OR (II) ANY AMOUNTS IN
EXCESS OF THE AGGREGATE AMOUNTS PAID TO EGENIX.COM UNDER
THIS LICENSE AGREEMENT DURING THE TWELVE (12) MONTH PERIOD
PRECEEDING THE DATE THE CAUSE OF ACTION AROSE.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE
ABOVE EXCLUSION OR LIMITATION MAY NOT APPLY TO LICENSEE.

10. Termination

This License Agreement will automatically terminate upon a material breach
of its terms and conditions if not cured within thirty (30) days of written
notice by eGenix.com. Upon termination, Licensee shall discontinue use
and remove all installed copies of the Software.

118

18. Copyright & License

11. Indemnification

Licensee hereby agrees to indemnify eGenix.com against and hold harmless
eGenix.com from any claims, lawsuits or other losses that arise out of
Licensee’s breach of any provision of this License Agreement.

12. Third Party Rights

Any software or documentation in source or binary form provided along
with the Software that is associated with a separate license agreement is
licensed to Licensee under the terms of that license agreement. This License
Agreement does not apply to those portions of the Software. Copies of the
third party licenses are included in the Software Distribution.

13. High Risk Activities

The Software is not fault-tolerant and is not designed, manufactured or
intended for use or resale as on-line control equipment in hazardous
environments requiring fail-safe performance, such as in the operation of
nuclear facilities, aircraft navigation or communication systems, air traffic
control, direct life support machines, or weapons systems, in which the
failure of the Software, or any software, tool, process, or service that was
developed using the Software, could lead directly to death, personal injury,
or severe physical or environmental damage (“High Risk Activities”).

Accordingly, eGenix.com specifically disclaims any express or implied
warranty of fitness for High Risk Activities.

Licensee agree that eGenix.com will not be liable for any claims or damages
arising from the use of the Software, or any software, tool, process, or
service that was developed using the Software, in such applications.

14. General

Nothing in this License Agreement affects any statutory rights of consumers
that cannot be waived or limited by contract.

Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between eGenix.com
and Licensee.

If any provision of this License Agreement shall be unlawful, void, or for any
reason unenforceable, such provision shall be modified to the extent
necessary to render it enforceable without losing its intent, or, if no such
modification is possible, be severed from this License Agreement and shall

119

mxODBC - Python ODBC Database Interface

not affect the validity and enforceability of the remaining provisions of this
License Agreement.

This License Agreement shall be governed by and interpreted in all respects
by the law of Germany, excluding conflict of law provisions. It shall not be
governed by the United Nations Convention on Contracts for International
Sale of Goods.

This License Agreement does not grant permission to use eGenix.com
trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party.

The controlling language of this License Agreement is English. If Licensee
has received a translation into another language, it has been provided for
Licensee’s convenience only.

15. Agreement

By downloading, copying, installing or otherwise using the Software,
Licensee agrees to be bound by the terms and conditions of this License
Agreement.

For question regarding this License Agreement, please write to:

eGenix.com Software, Skills and Services GmbH

Pastor-Loeh-Str. 48

D-40764 Langenfeld

Germany

120

18. Copyright & License

EGENIX.COM PROOF OF AUTHORIZATION

1 CPU License (Example)

This is an example of a "Proof of Authorization" for a 1 CPU License. These
proofs are either wet-signed by the eGenix.com staff or digitally PGP-signed
using an official eGenix.com PGP-key.

1. License Grant

eGenix.com Software, Skills and Services GmbH (“eGenix.com”), having an
office at Pastor-Loeh-Str. 48, D-40764 Langenfeld, Germany, hereby grants
the Individual or Organization (“Licensee”)

Licensee: <name of the licensee>

a non-exclusive, world-wide license to use the software listed below in
source or binary form and its associated documentation (“the Software”)
under the terms and conditions of this License Agreement and to the
extent authorized by this Proof of Authorization.

2. Covered Software

Software Name: <product name>

Software Version: <product version>

 (including all patch level releases)

Software Distribution: As officially made available by

 eGenix.com on http://www.egenix.com/

Operating System: any compatible operating system

3. Authorizations

eGenix.com hereby authorizes Licensee to copy, install, compile, modify
and use the Software on the following Installation Targets under the terms
of this License Agreement.

Installation Targets: one (1) CPU

121

http://www.egenix.com/

mxODBC - Python ODBC Database Interface

Use of the Software for any other purpose or redistribution IS NOT
PERMITTED BY THIS PROOF OF AUTHORIZATION.

4. Proof

This Proof of Authorization was issued by

<name>, <title>

Langenfeld, <date>

Proof of Authorization Key:

<license key>

122

18. Copyright & License

EGENIX.COM PROOF OF AUTHORIZATION

1 Developer CPU License (Example)

This is an example of a "Proof of Authorization" for a 1 Developer CPU
License. These proofs are either wet-signed by the eGenix.com staff or
digitally PGP-signed using an official eGenix.com PGP-key.

5. License Grant

eGenix.com Software, Skills and Services GmbH (“eGenix.com”), having an
office at Pastor-Loeh-Str. 48, D-40764 Langenfeld, Germany, hereby grants
the Individual or Organization (“Licensee”)

Licensee: <name of the licensee>

a non-exclusive, world-wide license to use the software listed below in
source or binary form and its associated documentation (“the Software”)
under the terms and conditions of this License Agreement and to the extent
authorized by this Proof of Authorization.

6. Covered Software

Software Name: <product name>

Software Version: <product version>

 (including all patch level releases)

Software Distribution: As officially made available by

 eGenix.com on http://www.egenix.com/

Operating System: any compatible operating system

7. Authorizations

7.1 Application Development

eGenix.com hereby authorizes Licensee to copy, install, compile, modify
and use the Software on the following Developer Installation Targets for the
purpose of developing products using the Software as integral part.

123

http://www.egenix.com/

mxODBC - Python ODBC Database Interface

Developer Installation Targets: one (1) Developer
CPU

7.2 Redistribution

eGenix.com hereby authorizes Licensee to redistribute the Software
bundled with a product developed by Licensee on the Developer
Installation Targets ("the Product") subject to the terms and conditions of
this License Agreement for installation and use in combination with the
Product on the following Redistribution Installation Targets, provided that:

1. Licensee shall not and shall not permit or assist any third party to
sell or distribute the Software as a separate product;

2. Licensee shall not and shall not permit any third party to

i. market, sell or distribute the Software to any end user
except subject to the terms and conditions of this License
Agreement,

ii. rent, sell, lease or otherwise transfer the Software or any
part thereof or use it for the benefit of any third party,

iii. use the Software outside the Product or for any other
purpose not expressly licensed hereunder;

3. the Product does not provide functions or capabilities similar to
those of the Software itself, i.e. the Product does not introduce
commercial competition for the Software as sold by eGenix.com;

4. Licensee has obtained Developer CPU Licenses for all developers
and CPUs used in developing the Product.

Redistribution Installation Targets:

any number of CPUs capable of running the Product and the Software

8. Proof

This Proof of Authorization was issued by

<name>, <title>

Langenfeld, <date>

124

18. Copyright & License

125

Proof of Authorization Key:

<license key>

	Introduction
	Installation
	Installation on Windows
	Prerequisites
	Procedure
	Uninstall

	Installation on Unix using the RPM packages
	Prerequisites
	Uninstall

	Installing from Source
	Prerequisites
	Procedure
	Reinstall
	Uninstall

	Access Databases using mxODBC
	Accessing Databases from Windows
	Looking for Windows ODBC drivers ?

	Accessing Databases from Unix
	MS SQL Server
	Oracle
	IBM DB2
	Looking for Unix ODBC drivers ?

	mxODBC Overview
	mxODBC and the Python Database API Specification
	mxODBC and the ODBC Specification
	Supported ODBC Versions
	ODBC Managers
	Changes between ODBC 2.x and 3.x

	Thread Safety & Thread Friendliness
	Transaction Support
	Stored Procedures
	Input/Output and Output Parameters
	SQL Output Statements in Stored Procedures

	Debugging

	mxODBC Connection Objects
	
	Same Interface for all Subpackages
	Connection Type Object

	Connection Object Constructors
	Default Transaction Settings

	Connection Object Methods
	Connection Object Attributes
	Additional Attributes

	mxODBC Cursor Objects
	
	Dependency on the Connection Object
	Using multiple Cursor Objects on a single Connection
	Same Interface for all Subpackages
	Cursor Type Object

	Cursor Object Constructors
	Cursor Object Methods
	Catalog Methods

	Cursor Object Attributes

	Data Types supported by mxODBC
	mxODBC Input Binding Modes
	SQL Type Input Binding
	Python Type Input Binding
	Output Conversions
	Output Type Converter Functions
	Auto-Conversions
	Unicode and String Data Encodings
	Additional Comments

	Supported DB-API Type Objects and Constructors
	mxODBC Exceptions and Error Handling
	Exception Classes
	Database Warnings
	Exception Value Format
	Error Handlers
	Examples

	mxODBC Functions
	Subpackage Functions
	mx.ODBC Functions

	mxODBC Globals and Constants
	Subpackage Globals and Constants
	mx.ODBC Globals and Constants

	mx.ODBC Subpackages
	Subpackage Notes
	Windows Platform Notes
	Unix Platform Notes
	Compiling from Source

	mx.ODBC.Windows -- Windows ODBC Driver Manager
	Connecting to a Database
	Supported Datatypes
	Issues with MS SQL Server
	File Data Sources

	mx.ODBC.iODBC -- iODBC Driver Manager
	
	Notes regarding 64-bit Platforms:

	mx.ODBC.unixODBC -- unixODBC Driver Manager
	
	Notes regarding 64-bit Platforms:

	ODBC Driver Subpackages
	mx.ODBC.Adabas -- SuSE Adabas D
	mx.ODBC.DB2 -- IBM DB2 Universal Database
	mx.ODBC.DBMaker -- CASEMaker's DBMaker Database
	mx.ODBC.EasySoft -- EasySoft ODBC-ODBC Bridge
	mx.ODBC.FreeTDS -- FreeTDS ODBC Driver for MS SQL Server and Sybase ASA
	mx.ODBC.Informix -- Informix SQL Server
	mx.ODBC.MySQL -- MySQL + MyODBC
	mx.ODBC.Oracle -- Oracle
	mx.ODBC.PostgreSQL -- PostgreSQL
	mx.ODBC.SAPDB -- SAP DB
	mx.ODBC.Solid -- Solid Server
	mx.ODBC.SybaseASA -- Sybase Adaptive Server Anywhere
	mx.ODBC.SybaseASE -- Sybase Adaptive Server Enterprise

	Hints & Links to other Resources
	Running mxODBC from a CGI script
	Freezing mxODBC using py2exe
	More Sources of Information

	Examples
	Testing the Database Connection
	mxODBC Package Structure
	Support
	Copyright & License

