
mmxxOODDBBCC
ZZooppee DDAA

VVVersion 2.0 eerrssiioonn 22..00

ODBC Database Interface
for Zope

Copyright 1999-2000 by IKDS Marc-André Lemburg, Langenfeld
Copyright 2000-2010 by eGenix.com GmbH, Langenfeld

All rights reserved. No part of this work may be reproduced or used in a any form or
by any means without written permission of the publisher.

All product names and logos are trademarks of their respective owners.

The product names "mxBeeBase", "mxCGIPython", "mxCounter", "mxCrypto",
"mxDateTime", "mxHTMLTools", "mxIP", "mxLicenseManager", "mxLog", "mxNumber",
"mxODBC", "mxODBC Connect", "mxODBC Zope DA", "mxObjectStore", "mxProxy",
"mxQueue", "mxStack", "mxTextTools", "mxTidy", "mxTools", "mxUID", "mxURL",
"mxXMLTools", "eGenix Application Server", "PythonHTML", "eGenix" and
"eGenix.com" and corresponding logos are trademarks or registered trademarks of
eGenix.com GmbH, Langenfeld

Printed in Germany.

Contents

Contents

1. Introduction .. 1
1.1 Features ... 1
1.2 Requirements... 3

Windows.. 3
Unix ... 3
Mac OS X ... 4

2. Installation... 5
2.1 Download the Software.. 5

2.1.1 Automatic download .. 5
2.1.2 Manual download... 5

Platform (Windows, Linux, Solaris, FreeBSD) 6
Python Build Version (2.5 , 2.6, etc.) 6
Python Build Architecture (32 bit or 64 bit) 6
Unicode Variant (UCS2 or UCS4)... 6

2.2 Installation in Zope 2.12 and later.. 6
2.2.1 Before You Start.. 7

Upgrading .. 7
License Files ... 7

2.2.2 Step-by-step Installation Guide... 8
Step 1... 8
Step 2... 9
Step 3... 10
Step 4... 10

3. Configuration .. 11
3.1 ODBC Data Source Configuration.. 11

mxODBC Zope DA - The Zope ODBC Database Adapter

3.1.1 General Notes...11
Connection Pooling by the ODBC Manager..........................11

3.1.2 Windows Platform..12
3.1.3 Unix Platform ...12
3.1.4 Mac OS X Platform ...13

3.2 ODBC Driver/Manager Troubleshooting13
3.2.1 Windows ODBC Manager ..14
3.2.2 Unix iODBC / unixODBC Manager.......................................14
3.2.3 Microsoft Access ODBC Driver ..15
3.2.4 IBM DB2 ODBC Driver ..15
3.2.5 SAP DB ODBC Driver ...16
3.2.6 FreeTDS ODBC Driver (access MS SQL Server from Linux) ..16
3.2.7 PostgreSQL ODBC Driver...17
3.2.8 Other ODBC Drivers and Manager Setups17
3.2.9 Stored Procedures ..17

3.3 Creating mxODBC Zope DA Connections19
3.3.1 Adding mxODBC Zope DA Connection Objects...................19
3.3.2 Choosing an ODBC Manager/Driver.....................................21
3.3.3 Database Connection String ...21
3.3.4 Database Timezone ..22
3.3.5 Connection Pool Size..23
3.3.6 Connection Options ...23
3.3.7 Open Connection ...24
3.3.8 Create Connection..24
3.3.9 Connection Status...26
3.3.10 Open/closed state of connection objects28
3.3.11 Error messages ...28

3.4 Configuring mxODBC Zope DA Connections...............................29
3.4.1 Choosing an ODBC Manager/Driver.....................................31
3.4.2 Database Connection String ...31
3.4.3 Database Timezone ..32
3.4.4 Connection Pool Size..33

Contents

3.4.5 Connection Options ... 33
Interface Options ... 33
Format Options .. 35
Result Set Options.. 37

3.5 Migration from other Zope Database Adapters 38
3.5.1 General Notes .. 38
3.5.2 Migration from the ZODBC DA.. 39
3.5.3 Migration from the unofficial mxODBC Zope DA................. 40
3.5.4 Migration from ZMySQLDA ... 40

4. Usage.. 42
4.1 Opening and Closing the Connection... 42

4.1.1 Opening a Connection ... 43
4.1.2 Closing a Connection ... 44

4.2 Testing the Connection .. 46
4.3 Copying and Moving Connection Objects.................................... 47
4.4 Z SQL Methods.. 47
4.5 Limitations ... 48

5. Python Interface .. 49
5.1 Object Classes ... 49

5.1.1 Class "Products.mxODBCZopeDA.ZopeDA.DatabaseConnection"
 49

Attributes: .. 49
Methods:.. 51

5.1.2 ExtensionClass
"Products.mxODBCZopeDA.ZopeDA.ZopeConnection" 58

Attributes: .. 58
Methods:.. 60

5.2 Errors ... 63
5.2.1 Class
"Products.mxODBCZopeDA.ZopeDA.DatabaseConnectionError" ... 63
5.2.2 Class "Products.mxODBCZopeDA.ZopeDA.ReplayTransaction"63
5.2.3 Class "Products.mxODBCZopeDA.ZopeDA.BadRequest" 63

mxODBC Zope DA - The Zope ODBC Database Adapter

Attributes:...63
Methods:..64

6. The mxODBC Interface.. 65
6.1 Windows Platform..65
6.2 Unix Platform ...65
6.3 Mac OS X Platform...66

7. Copyrights & Licenses ... 67
7.1 eGenix.com Commercial License..67

1.1 Features

1. Introduction

This manual describes the eGenix.com mxODBC Zope Database Adapter
(Zope DA) for the Zope Application Server.

The mxODBC Zope Database Adapter (Zope DA) gives you a professional
quality Zope ODBC interface which allows you to easily connect to any
ODBC data sources you have configured on your system via the Windows
ODBC Manager on Windows, the Mac OS X ODBC Manager on Mac OS X,
or iODBC/unixODBC ODBC managers on Unix platforms.

The mxODBC Zope DA package includes everything you need to install the
Zope DA: the latest egenix-mx-base and egenix-mxodbc packages as
well as the mxODBC Zope DA product itself.

1.1 Features

• Zope Level 3 Database Adapter: the mxODBC Zope DA is fully
multi-threaded and can handle multiple connections to multiple
databases.

• Works on Windows, Mac OS X, BSD and Unix platforms without
change.

• Fully compatible with Zope SQL Methods.

• Fully compatible with Python 2.5 and later.

• Fully compatible with Zope 2.12 and later.

• Fully eggified to simply the setup and enable use via zc.buildout.

• Fully compatible to the Znolk SQL Wizard Product and other
similar Zope Products relying on the common database schema
access methods .tables() and .columns().

• Drop-in replacement for the less flexible and performant
ZODBC DA. This is especially useful for heavily loaded sites.

• Connection Pooling: physical database connections are pooled and
kept open, to reduce the connection overhead to a minimum. This

1

mxODBC Zope DA - The Zope ODBC Database Adapter

is especially important for high latency database connections and
ones like Oracle which take a considerable amount of time to setup

• True Parallel Execution of Queries on a single logical connection:
the mxODBC Zope DA can manage any number of physical
connections on a single logical connection. This enables running
truly parallel Z SQL Method queries — a feature not available in
other Zope DAs which often serialize the queries.

• Robust Mode of Operation: connections which have timed out or
go away due to network problems are automatically reconnected -
with version 2.0 this is retried every time the connection is loaded.

• Cross-platform Connection Objects: The mxODBC Zope DA will
automatically choose the right platform specific ODBC manager for
you.

• Highly Customizable: The mxODBC Zope DA allows many
different customizations to increase performance or to enable
better integration both on the ODBC driver side as well as the
Zope/Python side.

• Native Support for newly added Python types: it is possible to
adjust the Zope DA to return native Python data types such as
Python datetime objects and decimals as well as a list of other
types and formats.

• Full Unicode Support: The Zope DA can optionally use Unicode to
communicate with the ODBC driver, only 8-bit strings, if the Zope
application requires this, or a mixed setup. Conversion between
Unicode and 8-bit strings is done automatically.

• Per Connection Adjustable ODBC Interface: mxODBC comes with
many different subpackages to choose from on Unix. The Zope DA
allows you to select these subpackages on a per-connection basis.

• Per Connection Error Handling: you can tell each connection
whether it should report ODBC warnings or not; furthermore all
warnings and errors are made available as list .messages on the
DatabaseConnection object.

• Built-in Schema Cache: this results in improved performance under
heavy load.

• Direct Database Schema Access: all ODBC catalog methods are
made available for much better database schema inquiry. The
catalog methods allow building generic database interrogation or

2

1.2 Requirements

manipulation tools and facilitates writing database independent
Zope products.

• Transaction Safe Automatic Reconnect: when the DA finds that a
connection has timed out, it automatically tries a reconnect and
replays the transaction on the connection (unlike other DAs which
break the transaction scheme by trying a reconnect without
replay).

• Customizable to many different ODBC drivers: ODBC is a
complicated standard and the levels supported by existing ODBC
drivers vary greatly. The mxODBC Zope DA provides several
connection options which can be used to enhance the
compatibility of the interface to the used drivers.

1.2 Requirements

mxODBC Zope DA needs these environment on Windows and Unix for
successful installation:

 Windows

• All Windows platforms starting with Windows 2000 are supported.

• Zope 2.12 or later needs to be installed and working. If you use
Plone 4 or later, you will already have this installed.

• Python 2.5 or later needs to be installed and working. You normally
have Python already installed if you are using Zope 2.12 or later,

• The Windows version of the mxODBC Zope DA uses the Windows
ODBC manager as ODBC manager, so you have to configure your
ODBC data sources using its GUI interface which is available
through the system settings folder.

• You should setup at least one configured and running ODBC data
source for testing purposes.

 Unix

• SuSE and RedHat Linux distributions for x86 and x86_64
(AMD64/EM64T) processors, FreeBSD and Sun Solaris are
supported Unix platforms. We can also provide custom builds for

3

mxODBC Zope DA - The Zope ODBC Database Adapter

other Unix platforms on request. Please write to sales@egenix.com
for details.

• Zope 2.12 or later needs to be installed and working. If you use
Plone 4 or later, you will already have this installed.

• On Linux, FreeBSD and Solaris, the binary package includes
support for the iODBC and the unixODBC managers. You must
have at least one of these installed in order to be able to connect to
ODBC data sources. Please use the ODBC manager GUI interfaces
to configure the data sources. The Zope DA prefers iODBC over
unixODBC if both are installed.

• You should setup at least one configured and running ODBC data
source for testing purposes.

 Mac OS X

• Mac OS X 10.4/10.5 Intel and PPC 32-bit and Mac OS X 10.6 Intel
64-bit are supported.

• Zope 2.12 or later needs to be installed and working. If you use
Plone 4 or later, you will already have this installed.

• Python 2.5 or later needs to be installed and working. You normally
have Python already installed if you are using Zope 2.12 or later,

• Mac OS X uses a variant of iODBC as system ODBC manager. On
Mac OS X 10.4 and 10.5 this comes pre-installed with the system.
On Mac OS X 10.6, the ODBC manager is available from Apple as
separate download. Please use the ODBC manager GUI interfaces
to configure the data sources.

• You should setup at least one configured and running ODBC data
source for testing purposes.

4

mailto:sales@egenix.com

2.1 Download the Software

2. Installation

eGenix.com distributes the mxODBC Zope DA as bundle of the
eGenix.com mx Base Distribution (egenix-mx-base), the eGenix.com
mxODBC Distribution (egenix-mxodbc) and the mxODBC Zope DA
Product in form of binary archive files and Python egg files.

2.1 Download the Software

2.1.1 Automatic download

The mxODBC Zope DA is normally distributed and installed in form of
Python egg archives which are built for automatic download and made
available through a special package index on the eGenix.com website.

A separate manual download is normally not needed, since the installation
and build tools used by Zope 2.12 and later will automatically find and
download the software from the eGenix.com website as needed.

2.1.2 Manual download

If you still want to download the egg archives or prebuilt archives eGenix
makes available, please read on.

You can download the binary archives for your combination of platform,
Python version and Unicode variant from the eGenix.com web-site at
http://www.egenix.com/.

Please make sure that you download the right version for your Zope
installation. If you get import errors, notices of failed initialization or Zope
hangs, you likely have the wrong product version installed.

These parameters make a difference:

5

http://www.egenix.com/

mxODBC Zope DA - The Zope ODBC Database Adapter

 Platform (Windows, Linux, Solaris, FreeBSD)

All recent versions of these operating systems are supported.

 Python Build Version (2.5 , 2.6, etc.)

To check which Python version your Zope installation is using, startup the
Python interpreter1 using the –V option:

python –V

This will print out the Python version number.

 Python Build Architecture (32 bit or 64 bit)

On many platforms we support x86 32-bit and x86_64 (AMD64/EM64T)
64-bit versions of Python.

To find out which version Zope is using, run the following command:

python -c 'import struct; print struct.calcsize("P")*8,"bit"'

This will print out “32 bit” or “64 bit”.

 Unicode Variant (UCS2 or UCS4)

On Unix, Python can be built using two different Unicode variants: UCS2
and UCS4.

To find out which variant your Python version was compiled with, run the
following command:

python -c 'print "UCS%s"%len(u"x".encode("unicode-internal"))'

This will either print out “UCS2” or “UCS4”.

2.2 Installation in Zope 2.12 and later

Starting with Zope 2.12, all Zope products are managed using Python egg
files. The layout is still the same as for Zope 2.7 and later, i.e. you have

1 Have a look at the ./bin/runzope or ./bin/runzope.bat startup file in your Zope
directory to find the path to the Python interpreter.

6

2.2 Installation in Zope 2.12 and later

• the Zope Software directory (what used to be Zope’s
SOFTWARE_HOME and now usually maps to the buildout or
virtualenv home directory) which we’ll call <Zope Software
Directory>/ and

• the Zope Instance directory (what used to be Zope’s
INSTANCE_HOME and refers to the Zope instance's base directory)
which we’ll call <Zope Instance Directory>/.

This allows running multiple Zope instances with just one installation of the
Zope Software.

Zope products are usually installed in the Zope Software Directory via
zc.buildout or easy_install (comes with setuptools). Please check the Zope
2.12 Installation Guide for details.

Even though the mxODBC Zope DA is licensed per Zope Instance, it can
still be installed in the Zope Software directory (where the main Zope
software resides).

Only the license files you received must be installed under the Zope
Instance directory (the directory from where you start your Zope instance
by running ./bin/runzope on Unix or .\bin\runzope.bat on Windows).

2.2.1 Before You Start

The binary installation archives and egg files include everything you need to
run the mxODBC Zope DA, including the necessary egenix-mx-base and
egenix-mx-commercial packages for Zope.

Please make sure that you do not have egenix-mx-base or egenix-mxodbc
installed separately, since the installation will not succeed in such a setup.

 Upgrading

When upgrading from a previous version of the mxODBC Zope DA, you
should uninstall the egenix-mxodbc-zopeda egg directory from your
"<Zope Software Directory>/lib/python2.5/site-packages/" directory and
edit the file easy-install.pth in that directory to remove the corresponding
egg entry.

 License Files

In order to run the mxODBC Zope DA, you will need license files from
eGenix.com.

7

http://pypi.python.org/pypi/zc.buildout
http://pypi.python.org/pypi/setuptools
http://pypi.python.org/pypi/setuptools
http://docs.zope.org/zope2/releases/2.12/INSTALL.html
http://docs.zope.org/zope2/releases/2.12/INSTALL.html

mxODBC Zope DA - The Zope ODBC Database Adapter

If you want to test the product before buying it, you can request evaluation
licenses via the eGenix.com web-site at http://www.egenix.com/.

When buying licenses from the eGenix.com online shop
(http://shop.egenix.com/), you will receive the license files immediately
after purchase.

In both cases, the license files are sent to the email address you specified
during the purchase process or from which you wrote the evaluation
license request in form of a ZIP license archive attached to the license email
– usually named licenses.zip.

The license archive licenses.zip contains one subdirectory per Zope
Instance license you bought. The directories are named after the license key
for each Zope Instance license. A typical license archive will have these
contents:

 2100-8789-0322-0926-2568-6429/mxodbc_zopeda_license.py
 2100-8789-0322-0926-2568-6429/mxodbc_zopeda_license.txt
 2100-8089-0312-0926-2668-6529/mxodbc_zopeda_license.py
 2100-8089-0312-0926-2668-6529/mxodbc_zopeda_license.txt

(in the above example, the license archive contains the files for two product
licenses).

In order to install the license files, please unzip the license archive to a
temporary directory.

During the installation process you will have to move the files to the right
location in your Zope Instance Directory for the mxODBC Zope DA
product to pick them up during Zope startup time.

2.2.2 Step-by-step Installation Guide

 Step 1

Determine whether you are using a UCS2 or UCS4 build of Python
(Windows users always need the UCS2 version).

To find out which variant your Python version was compiled with, run the
following command:

python -c 'print("UCS%s"%len(u"x".encode("unicode-internal")))'

This will either print out “UCS2” or “UCS4”.

8

http://www.egenix.com/
http://shop.egenix.com/

2.2 Installation in Zope 2.12 and later

 Step 2

Next, install the egenix-mxodbc-zopeda egg package in your Zope
installation.

Note that you may need to have admin or root privileges in order to
successfully complete the following step, unless you are using a virtualenv-
based setup.

If you got UCS2 in step 1, run the following command in your Zope
Software Directory using the easy_install script from the Python
installation you intend to use with Zope2:

easy_install -i http://downloads.egenix.com/python/index/ucs2/ \
 egenix-mxodbc-zopeda

If you got UCS4 in step 1, use this command:

easy_install -i http://downloads.egenix.com/python/index/ucs4/ \
 egenix-mxodbc-zopeda

If you manually downloaded the egg archive from the eGenix.com website
to a temporary directory, pass the file name directly to easy_install to
start the installation:

easy_install \
 /path-to-egg-file/egenix_mxodbc_zopeda-2.0.0-py2.6-win32.egg

(replace the file name with the one of the file you downloaded)

After installation, the egg file can be removed from the temporary directory
without causing harm.

For more information on how to use easy_install, please see the
easy_install documentation.

Alternatively, you can edit the above settings into your buildout.cfg file to
have a buildout recipe download and install the egg automatically.

2 The backslash ("\") will only work in Unix command shells. On Windows, please
write everything on one line and remove the backslash.

9

http://docs.zope.org/zope2/releases/2.12/INSTALL.html
http://docs.zope.org/zope2/releases/2.12/INSTALL.html
http://peak.telecommunity.com/DevCenter/EasyInstall

mxODBC Zope DA - The Zope ODBC Database Adapter

 Step 3

Now that you have installed the product code, you need to install the
proper licenses in order for the mxODBC Zope DA to startup correctly.

Go to the temporary directory where you unzipped the license archive and
change to the license subdirectory which contains the license for the Zope
Instance that you are currently working on.

Copy the two files mxodbc_zopeda_license.py and
mxodbc_zopeda_license.txt from the license subdirectory to the directory
<Zope Instance Directory>/lib/python/ in your Zope Instance installation.

If you are using buildout, make sure that these files are not removed when
running buildout or use a recipe to recopy the licenses files to the <Zope
Instance Directory>/lib/python/ directory.

 Step 4

To complete the installation, restart the Zope instance. Zope will then
automatically register the eGenix mxODBC Zope DA.

10

3.1 ODBC Data Source Configuration

3. Configuration

The configuration of access to a database involves two steps:

1. Configuration of the database as ODBC data source

2. Creation of mxODBC Zope DA Connection objects

The next sections explain the details of these two steps.

3.1 ODBC Data Source Configuration

Before being able to connect to a database, you have to configure the
database as data source in the Operating System's ODBC manager.

3.1.1 General Notes

These notes apply to all platforms.

 Connection Pooling by the ODBC Manager

The mxODBC Zope DA implements its own connection pooling. It is
therefore not required to turn on connection pooling in the ODBC
manager. In fact, this may even sometimes result in strange side-effects,
very slow connections and errors due to the state stored on the pooled
connections.

11

mxODBC Zope DA - The Zope ODBC Database Adapter

Turning off ODBC manager connection pooling is especially important
when using the ODBC driver for MS SQL Server. If you do not switch off
connection pooling in the ODBC manager for SQL Server connections, you
will see a much degraded performance of the mxODBC Zope DA. If you
switch off connection pooling, be sure to reboot the client machine in order
for the change to take effect.

3.1.2 Windows Platform

On Windows, you must configure the ODBC manager through the
standard system settings dialogs (ODBC Data Sources).

Please consult the Windows help files and your database/ODBC driver
documentation for details on how to setup data sources in the Windows
ODBC Manager.

Note that if you plan to run Zope as Windows service, it may be necessary
to setup the ODBC data sources as System-DSN. Otherwise, the Zope
process won’t be able to see or access the ODBC data sources you setup in
the Windows ODBC manager.

3.1.3 Unix Platform

On Unix (Linux or Solaris), it suffices to supply a standard ODBC INI file
either as /etc/odbc.ini or in the Zope user home directory as ~/.odbc.ini
(note the leading ‘.’) file which uses the same syntax as the Windows file
ODBC.INI.

Alternatively, you can use the iODBC/unixODBC management GUIs which
allows setting up data sources in the same way as the Windows ODBC
manager provides on Windows.

Details on the ODBC manager configuration on Unix can be found on the
homepages of the iODBC/unixODBC managers:

iODBC - http://www.iodbc.org/

unixODBC - http://www.unixodbc.org/

Please consult your database / ODBC driver documentation for details on
how to setup data sources using these ODBC managers.

12

http://www.iodbc.org/
http://www.unixodbc.org/

3.2 ODBC Driver/Manager Troubleshooting

Note that you only need to have one of these two ODBC managers
installed on the installation machine for the mxODBC Zope DA to work.

The Zope DA will log messages at Zope startup time to the <Zope Instance
Directory>/log/events.log which informs you about the successfully added
interfaces for iODBC and/or unixODBC. It will issue a warning in case both
interfaces fail to load. In that case, please make sure you have correctly
installed the ODBC manager and that the Zope user account is setup to
find the shared libraries provided by the ODBC manager of your choice.

3.1.4 Mac OS X Platform

On Mac OS X, please configure the ODBC manager through the standard
system ODBC Administrator. Open the finder and navigate to Applications /
Utilities / ODBC Administrator.

Internally, the ODBC Administrator builds upon the open-source ODBC
manager iODBC, so the comments related to iODBC also apply to the Mac
OS X ODBC manager.

If you are running Mac OS X 10.6 or later and don't have the ODBC
Administrator installed, you can download and install it from Apple.

Please consult the Mac OS X help and your database/ODBC driver
documentation for details on how to setup data sources in the Mac OS X
ODBC Administrator.

If you are running on Mac OS X 10.6 and have problems finding the data
sources configured with the ODBC Administrator in the mxODBC Zope DA
data source list or connecting to them, please see this Mac Dev Center
article for a fix.

3.2 ODBC Driver/Manager Troubleshooting

This section collects a few hints and tricks we have gathered during the
beta testing and rollout phase which may be helpful in setting up a working
ODBC connection.

Since ODBC drivers can sometimes vary in quality and features, care has to
be taken when configuring the ODBC drivers so that you get the best
performance and stability possible.

13

http://support.apple.com/downloads/ODBC_Administrator_Tool_for_Mac_OS_X
http://developer.apple.com/mac/library/releasenotes/ToolsLanguages/ODBCNoPerUserConfigs106/
http://developer.apple.com/mac/library/releasenotes/ToolsLanguages/ODBCNoPerUserConfigs106/

mxODBC Zope DA - The Zope ODBC Database Adapter

3.2.1 Windows ODBC Manager

The Windows ODBC manager implements a feature called Connection
Pooling which allows faster connects to databases. In some cases we have
observed failures and problems when using the connection pooling feature
of the ODBC manager together with the mxODBC Zope DA.

If you are observing similar problems, we suggest that you turn off
connection pooling in the Windows ODBC manager for those data sources
that you wish to use the Zope DA for.

The mxODBC Zope DA implements its own connection pooling, so
switching this feature off in the ODBC manager will not degrade
performance.

Turning off ODBC manager connection pooling is especially important
when using the ODBC driver for MS SQL Server. If you do not switch off
connection pooling in the ODBC manager for SQL Server connections, you
will see a much degraded performance of the mxODBC Zope DA. If you
switch off connection pooling, be sure to reboot the client machine in order
for the change to take effect.

3.2.2 Unix iODBC / unixODBC Manager

On Unix the mxODBC Zope DA uses an already installed iODBC and/or
unixODBC manager to communicate with the installed ODBC drivers.

At Zope startup time, the Zope DA tries to import the interfaces for the two
ODBC managers and writes a notice to the Zope startup shell window.
Zope can only use those interfaces which are successfully imported at this
point.

If both interfaces fail to load, the mxODBC Zope DA will not be usable at
all and a warning message is printed to the startup shell.

Typical problems which prevent the mxODBC Zope DA from correctly
importing the underlying mxODBC interfaces to the ODBC managers are:

• missing ODBC manager installations,

• missing permissions of the Zope user account to access the shared
libraries of the ODBC managers (these are typically called
libiodbc.so and libodbc.so),

14

3.2 ODBC Driver/Manager Troubleshooting

• incorrectly setup linker parameters: the dynamic linker cannot find
the shared libraries; this can usually be remedied by setting the
LD_LIBRARY_PATH environment variable,

• incompatible ODBC manager versions.

If you use recent versions of the iODBC and/or unixODBC managers, the
last point is less likely, since eGenix always builds the binary distributions
of the mxODBC Zope DA against the latest stable releases of these
managers.

3.2.3 Microsoft Access ODBC Driver

The MS Access database uses the Jet Engine to access the database. ODBC
drivers for the Jet Engine prior to version 4.0 are not thread-safe and can
cause problems if used with mxODBC Zope DA.

Please make sure that you have the latest revision of the Jet Engine and
corresponding ODBC drivers installed.

If you get an error HY024 mentioning an invalid option value during
connect, it is likely that the data source is an auto-commit-only data source
(meaning that it doesn’t support transactions), e.g. a file data source.

In such a case:

• create a connection object that is initially closed,

• go to the properties tab of the connection object,

• select “Use Auto-Commit” and “Open Connection”

• click “Save Changes”

The connection should now be opened in auto-commit mode. Note that the
data source will not participate in the Zope transaction mechanism. You
should only use such data sources for reading data, not writing data.

3.2.4 IBM DB2 ODBC Driver

The DB2 ODBC Driver for NT has an optimization option called “early
cursor close” (or similar). This has to be switched off. Otherwise, you’ll get

15

mxODBC Zope DA - The Zope ODBC Database Adapter

lots of SQLSTATE 08001 or 080003 errors during connects and parallel
execution of SQL Methods becomes impossible.

3.2.5 SAP DB ODBC Driver

Some versions of the SAP DB ODBC driver have a problem with reporting
the correct scale of float columns. As a result, the mxODBC Zope DA
returns float columns truncated to integers (this is the ZODBC DA default).

If you encounter this problem, you can configure the SAP DB connection
object to not convert scale 0 numeric values to integers by selecting the
"Leave scale 0 floats untouched" connection option.

3.2.6 FreeTDS ODBC Driver (access MS SQL Server from Linux)

The FreeTDS ODBC driver is a free ODBC driver for Unix which allows you
to connect from Unix to Sybase and/or Microsoft's SQL Server running on
different platforms such as Windows 2000.

Unfortunately, the driver's current versions (0.8x) still lack a few ODBC
features such as Unicode support which you may need for production
work.

To work around the showstopper bugs in the driver, eGenix has added a
set of compatibility features to the underlying mxODBC interface to at least
make the setup mxODBC Zope DA + FreeTDS driver usable for standard
queries to the supported databases. See the mxODBC Documentation for
hints on how to setup FreeTDS to work together with the mxODBC Zope
DA.

For production systems, we recommend deploying professional quality
ODBC drivers to access MS SQL Server and/or Sybase, such as the ones
available from EasySoft, OpenLink and DataDirect.

If you do intend to use the FreeTDS ODBC driver, these are some things to
check:

• “Leave scale 0 floats untouched” may need to be enabled, since at
least some versions of the FreeTDS ODBC driver always return
scale 0 for floats which causes the mxODBC Zope DA to believe
that the driver is sending an integer. As a result, float values are
mistakenly truncated to integers.

16

3.2 ODBC Driver/Manager Troubleshooting

3.2.7 PostgreSQL ODBC Driver

The PostgreSQL project has an ODBC driver which is available for
Windows as binary and also compiles on Unix from source.

On Unix, the driver is typically included in unixODBC ODBC manager
binary packages, so you may have the driver already installed if you're
running Zope on Unix and have unixODBC installed (the ODBC driver file
is called psqlodbc.so).

Connecting to PostgreSQL using e.g. unixODBC or the Windows ODBC
manager works just like for all other databases.

The only known problem with the ODBC driver for PostgreSQL is the lack
of support for BLOBs (binary long objects). Please refer to the ODBC driver
documentation for ways to work-around this caveat in the driver. Apart
from that data type, all basic data types are supported.

3.2.8 Other ODBC Drivers and Manager Setups

More information about various ODBC driver and manager setups can be
found in the mxODBC Documentation: Interface – Subpackages - General
Notes.

3.2.9 Stored Procedures

If you are using stored procedures with the mxODBC Zope DA, you may
get misleading results from the Z SQL Methods.

The reason is that the mxODBC Zope DA supports multiple result sets
(unlike the ZODBC DA) and each SELECT used in the stored procedures
can result in the ODBC driver generating a new result set.

Per default, the mxODBC Zope DA fetches and returns the first available
result set from the ODBC driver, so this may not be the one you actually
want from the stored procedure.

To work around this problem, the mxODBC Zope DA Connections provide
a connection option "Fetch last available result set ?". Turning on this options
will cause the Zope DA to fetch the last available result set, rather than the
first. See section 3.4.1 Connection Options for details.

However, using this option can downgrade the performance of the Zope
DA and you are advised to write your stored procedures in a way which

17

mxODBC Zope DA - The Zope ODBC Database Adapter

does not generate multiple result sets or clear all but the final one prior to
returning.

18

3.3 Creating mxODBC Zope DA Connections

3.3 Creating mxODBC Zope DA Connections

The next few section explain how to create connection object using the
mxODBC Zope DA.

Please note that most of the settings you make during the creation process
can be adjusted after object creation in the Properties dialog.

3.3.1 Adding mxODBC Zope DA Connection Objects

After installation and restart, the “Add Object” list box in the Zope
management interface should show an entry “eGenix mxODBC Zope
Database Connection”.

19

mxODBC Zope DA - The Zope ODBC Database Adapter

To add a new connection, simply add an object of this type to a folder.

The object creation dialog will be shown, asking you for the parameters of
the new object.

20

3.3 Creating mxODBC Zope DA Connections

You will need to enter the object id, title and details about the connection.

The next sections explain the different connection parameters and how to
configure them.

3.3.2 Choosing an ODBC Manager/Driver

Since mxODBC provides various interfaces to ODBC drivers and managers,
the creation dialog lets you select the one you want to use for the
connection object. Setting this to "Platform Default" will cause the mxODBC
Zope DA to automatically choose an available ODBC manager interface for
the platform Zope is currently running on.

Leaving this field set to “Platform Default” will make your connection
objects portable between Windows and Unix platforms. Choosing a specific
ODBC driver may increase performance.

3.3.3 Database Connection String

The connection string has to be formatted according to the ODBC DSN
standard:

DSN=<datasource name as displayed in the ODBC manager>;
UID=<userid>;
PWD=<password>

e.g. DSN=testsource;UID=test;PWD=test

It is common for ODBC drivers to allow specifying additional parameters in
the DSN string. Please consult your ODBC driver documentation for
details.

You can click on the “Available Data Sources” link to get a pop-up window
displaying the currently configured ODBC data sources. The list is fetched
from the available ODBC managers and allows for easy cut&paste of the
connection string. You only have to fill in the user id and password.

21

mxODBC Zope DA - The Zope ODBC Database Adapter

3.3.4 Database Timezone

Zope stores date/time values with an associated time zone. Even though the
SQL standard defines date/time values with timezones, not all databases
support this and the ODBC standard defines no interface to obtain this
information from the database.

By entering a timezone in the entry field you can define the timezone to be
used for all date/time values fetched from the database, e.g. if you know
that the data in the database is GMT, then you can have the Zope DA create
Zope DateTime instances which use the GMT timezone. The Database
Timezone entry field can also be left blank to assume the local timezone.

22

3.3 Creating mxODBC Zope DA Connections

Note that date/time values passed to the database are not converted from
the Zope DateTime value's timezone to the database timezone, since there
is no reasonable way to extract date/time values from the query string for
manipulation. This is a limitation of Zope itself, not of the eGenix mxODBC
Zope DA.

3.3.5 Connection Pool Size

The mxODBC Zope DA manages two types of connections: logical
connections (the connection object you are creating is such a logical
connection) and physical connections (these are actual connections to the
database).

Unlike other database adapters, the mxODBC Zope DA can handle multiple
physical connections per logical connection. This enables using a single
logical connection in parallel on multiple threads, e.g. to have a Z SQL
Method run on multiple requests simultaneously.

The Connection Pool Size defines the number of physical connections to
manage on this logical connection object.

If supported by the ODBC driver, it is recommended to set the Connection
Pool Size to the number of threads run by the Zope application server
(usually at least 4).

Note: Each Zope thread will only use one physical connection, so using a
connection pool larger than the number of active Zope threads will not
result in better performance.

3.3.6 Connection Options

Connection options can only be set on existing objects, so in case you plan
to use any of these options, you will first have to create a closed connection
object and then edit the connection options in the "Properties" tab of the
connection object before opening the connection.

See section 3.4 Configuring mxODBC Zope DA Connections for details.

23

mxODBC Zope DA - The Zope ODBC Database Adapter

3.3.7 Open Connection

You can either create a closed connection or an open one. Creating a closed
connection is sometimes useful in case you want to setup a connection
object which is meant to run on a different system. The default is to create
a closed connection.

Unlike some other Zope database adapters, the mxODBC Zope DA
maintains the open/closed state you define here across Zope restarts. If you
create an open connection, the Zope DA will try to reopen the connection
after a Zope restart. A closed connection will not be opened after a restart.

3.3.8 Create Connection

After you have entered the object id, title and details about the connection,
you are ready to create the connection.

24

3.3 Creating mxODBC Zope DA Connections

Hitting the Create Connection Object button will create the mxODBC
Zope DA connection object, possibly trying to open the physical
connections provided that you have chosen to create an open connection.

You should then see a new connection object test in the folder.

25

mxODBC Zope DA - The Zope ODBC Database Adapter

3.3.9 Connection Status

Clicking on the connection object in the folder, brings up the connection
status page of the connection management interface.

26

3.3 Creating mxODBC Zope DA Connections

27

mxODBC Zope DA - The Zope ODBC Database Adapter

This shows the connection object details as well as the currently active
connection options and the state of the connection pool associated with
this connection object.

If the connection object is currently in the closed state, you can open the
connection by clicking on the Open Connection button.

Likewise, if the connection is open, clicking on Close Connection will close
the connection.

3.3.10 Open/closed state of connection objects

The closed/open state of the connection object is stored persistently in the
connection object, meaning that Zope will open the database connection
when loading an open connection object or load the closed connection
object without opening a database connection.

In case of a failure to connect an open database connection upon loading
the connection object, the object will enter a special "open, but not
connected" state. In this mode, the mxODBC Zope DA will automatically
try to reconnect to the database every time the object is loaded, allowing
the application to continue working without restart after the database
connection problem has been resolved. Any queries issued on a connection
object in the "open, but not connected" will fail with an error.

3.3.11 Error messages

If there is an error during the connection process, the mxODBC Zope DA
will display all available information for further inspection.

28

3.4 Configuring mxODBC Zope DA Connections

3.4 Configuring mxODBC Zope DA Connections

You can change most mxODBC Zope DA Connection parameters after
having created them.

To change any of the options, go to the "Properties" tab of the connection
object management interface. This will display the full set of available
connection options.

You can then make your changes and save them by clicking on the "Save
Changes" button near the bottom of the screen.

29

mxODBC Zope DA - The Zope ODBC Database Adapter

30

3.4 Configuring mxODBC Zope DA Connections

3.4.1 Choosing an ODBC Manager/Driver

Since mxODBC provides various interfaces to ODBC drivers and managers,
the creation dialog lets you select the one you want to use for the
connection object. Setting this to "Platform Default" will cause the mxODBC
Zope DA to automatically choose an available ODBC manager interface for
the platform Zope is currently running on.

Leaving this field set to “Platform Default” will make your connection
objects portable between Windows and Unix platforms. Choosing a specific
ODBC driver may increase performance.

3.4.2 Database Connection String

The connection string has to be formatted according to the ODBC DSN
standard:

DSN=<datasource name as displayed in the ODBC manager>;
UID=<userid>;
PWD=<password>

e.g. DSN=testsource;UID=test;PWD=test

It is common for ODBC drivers to allow specifying additional parameters in
the DSN string. Please consult your ODBC driver documentation for
details.

You can click on the “Available Datasources” link to get a pop-up window
displaying the currently configured ODBC data sources. The list is fetched

31

mxODBC Zope DA - The Zope ODBC Database Adapter

from the available ODBC managers and allows for easy cut&paste of the
connection string. You only have to fill in the user id and password.

3.4.3 Database Timezone

Zope stores date/time values with an associated time zone. Even though the
SQL standard defines date/time values with timezones, not all databases
support this and the ODBC standard defines no interface to obtain this
information from the database. By entering a timezone in the entry field
you can define the timezone to be used for all date/time values fetched
from the database, e.g. if you know that the data in the database is GMT,
then you can have the Zope DA create Zope DateTime instances which use
the GMT timezone. The Database Timezone entry field can also be left
blank to assume the local timezone.

32

3.4 Configuring mxODBC Zope DA Connections

Note that date/time values passed to the database are not converted from
the Zope DateTime value's timezone to the database timezone, since there
is no reasonable way to extract date/time values from the query string for
manipulation. This is a limitation of Zope itself, not of the eGenix mxODBC
Zope DA.

3.4.4 Connection Pool Size

The mxODBC Zope DA manages two types of connections: logical
connections (the connection object you are creating is such a logical
connection) and physical connections (these are actual connections to the
database).

Unlike other database adapters, the mxODBC Zope DA can handle multiple
physical connections per logical connection. This enables using a single
logical connection in parallel on multiple threads, e.g. to have a Z SQL
Method run on multiple requests simultaneously.

The Connection Pool Size defines the number of physical connections to
manage on this logical connection object.

If supported by the ODBC driver, it is recommended to set the Connection
Pool Size to the number of threads run by the Zope application server
(usually at least 4).

Note: Each Zope thread will only use one physical connection, so using a
connection pool larger than the number of active Zope threads will not
result in better performance.

3.4.5 Connection Options

For some data sources or ODBC drivers accessing these data sources,
which don't implement the full ODBC standard or have bugs, it is necessary
to enable some connection options provided by the mxODBC Zope DA to
make it more compatible to these drivers/data sources.

 Interface Options

 Ignore Database Warnings

Some ODBC drivers tend to raise warnings in situations where extra
information needs to be passed to the user such as truncation of data,
changing of context, implicit conversions, etc. This means that e.g. an

33

mxODBC Zope DA - The Zope ODBC Database Adapter

INSERT can cause a Warning exception informing about some special event
even though the execution of the statement succeeded. Note that Warning
exceptions cause result sets of SELECT statements to be cleared.

mxODBC Zope DA defaults to reporting these warnings to the user, but in
some situations it may be required that this is not done, e.g. for deploying
Zope on production systems.

You can turn off the reporting of warnings, by selecting the "Ignore
Database Warnings" checkbox in the connection's properties dialog.

 Use Auto-Commit

The mxODBC Zope DA operates in transactional mode per default. This
assures data consistency and should always be used in production
environments to prevent loss of data.

However, during testing or in read-only situations, it may be desirable to
operate some data sources in non-transactional mode. Some data sources
also lack transaction support, such as MySQL3, MS Excel flat files, etc.

If you enable "Use Auto-Commit", all modifications on the connection will
directly change the database, even if Zope rolls back the transaction due to
an error.

USE WITH CARE: Failing Zope transactions can cause you data source to
become inconsistent or even corrupted. You are safe if the connection is
only used for reading data from the data source.

 Use Connect on Demand

To save resources during Zope operation, the mxODBC Zope DA can open
connections on demand. If you enable "Use Connect on Demand",
connections will be put in the open state, but the actual data source
connection will be deferred to connection usage time.

A connection which is configured to use connect-on-demand will display
the "on Demand" option in the status page of the connection management
screen. This let's you open the connection in the "Connect on Demand"
state.

34

3.4 Configuring mxODBC Zope DA Connections

 Format Options

 String format to use in result sets

While the mxODBC Zope DA fully supports Unicode, many Zope
applications still rely on 8-bit strings for text data. For this reason, the
mxODBC Zope DA defaults to returning text data as plain "8-bit strings".

If you want to use Unicode for representing text data, i.e. to avoid problems
when dealing with different character sets, you can enable the setting
"Unicode" to have the Zope DA return text data as Python Unicode objects.

If the ODBC or database don't support Unicode, the Zope DA will
automatically convert the string data it receives from the database to
Unicode based on the given string encoding (see next section).

In case you want to avoid any such automatic conversion, you can also set
the option to "8-bit strings and Unicode". The Zope DA will then return text
data from the database in the database provided format, ie. 8-bit strings or
Unicode.

 String encoding to for Unicode conversions

When using the "Unicode" or "8-bit strings" setting, the mxODBC Zope DA
will sometimes have to convert input or output data between Unicode and
8-bit strings, e.g. if you set the string format to Unicode and the database
sends 8-bit string, the Zope DA will automatically convert the 8-bit string
data to Unicode.

In order for this to work, the mxODBC Zope DA will have to know the
encoding used for the 8-bit string text data.

Leave the field empty if you want the Zope DA to use the Python default
encoding, which usually is US-ASCII.

If you want to adjust the setting to a different encoding, you can use any of
the available and supported Python encodings listed in the Python
documentation. Common encodings are utf-8, latin-1 and cp1252.

 Date/time format to use in result sets

The Zope DA supports many different date/time formats. This option allows
you to select which type of date/time object you want to receive in the
result sets.

35

http://docs.python.org/library/codecs.html
http://docs.python.org/library/codecs.html

mxODBC Zope DA - The Zope ODBC Database Adapter

The default is to use Zope's own DateTime object. It is also possible to
adjust the setting to receive mxDateTime objects, Python datetime module
objects, broken down tuples as used in the Python time module or strings.

When using the "Date/Time Strings" format, the database and/or ODBC
driver decides which date/time layout to use. Please consult your database
and ODBC driver documentation for details.

 Decimal format to use in result sets

Earlier Python version did not have support for working with decimal
numbers, i.e. numbers with fixed precision as used for e.g. monetary
values.

Since Python 2.5 and later come with a built-in decimal type, the Zope DA
supports using this type for database interfacing as well.

In order to remain backwards compatible, the default is still set to use
floats.

 Fetch TIME columns as strings

Zope only supports date/time value which have both a date and a time
component.

Since database columns of the TIME type do not carry any date information,
Zope's DateTime implementation automatically adds the current date to the
value.

If you enable "Fetch TIME columns as strings", the mxODBC Zope DA will
convert these values to time strings rather than Zope DateTime values.

 Fetch short integers as integers

Some ODBC drivers have problems fetching small integers. As a result the
drivers issue database warnings or errors due to overflow problems.

Setting the "Fetch short integers as integers" option, will cause mxODBC to
fetch these as integers.

 Fetch NULL values as empty string

The mxODBC Zope DA will normally fetch SQL NULL values as Python
None object. Some other Zope adapters return empty strings instead.

36

3.4 Configuring mxODBC Zope DA Connections

Setting the "Fetch NULL values as empty strings" option, will cause mxODBC
to return empty strings instead of Python None objects for SQL NULL
values.

 Leave scale 0 floats untouched

For compatibility with the ZODBC DA, the mxODBC Zope DA will
automatically convert scale 0 floating point values (e.g. DECIMAL(10,0)) to
integers.

Unfortunately, some ODBC drivers report a wrong scale value for floating
point columns. The option "Leave scale 0 floats untouched" let's you switch
off this behavior, so that floating point numbers will always be returned as
floats.

 Result Set Options

 Fetch last available result set

Unlike the ZODBC DA, the mxODBC Zope DA supports fetching multiple
result sets from the data source, e.g. in case a stored procedure generated
multiple result sets.

mxODBC Zope DA returns the first available result set per default. This can
sometimes cause the result set returned by Z SQL Methods to return an
intermediate result set from a stored procedure call, e.g. if the stored
procedure called a subroutine which then generated a result set.

The option "Fetch last available result set" allows configuring the mxODBC
Zope DA Connection to work-around this problem by always fetching the
last available result set.

Note: It is always advised to code the stored procedure to remove any
unneeded result sets before returning, since using this option can introduce
a performance penalty.

 Always fetch the complete available result set

When using the mxODBC Zope DA with Z SQL Methods, you can specify a
value for the maximum number of rows to fetch from a result set.
Unfortunately, Z SQL Methods default to a value of 1000 for this max_rows
limit attribute, instead of defaulting to no limit at all.

If you want to remove that limit, you could set the max_rows Z SQL
Method attribute to 0 (no limit). Another possibility is using a very high

37

mxODBC Zope DA - The Zope ODBC Database Adapter

value (e.g. 100000), but this is likely to cause problems with the driver and
will significantly increase the processing time of the query.

Enabling the “Always fetch the complete available result set” option will let
the mxODBC Zope DA always ignore the max_rows parameter for queries
on the connection object. This will effectively remove the limit and its
implications for the connection object and can be used to work-around
situations where setting the max_rows default value is not possible or not
desired.

The max_rows query parameter has the following interpretation in the
mxODBC Zope DA:

• 0, None: fetch all rows in the result set

• < 0: don’t fetch any rows from the result set

• n: fetch at most n rows from the result set

If you are using Z SQL Methods to do queries on the connection, you can
set the max_rows parameter passed to the mxODBC Zope DA by adjusting
the Z SQL Method attribute “Maximum rows to retrieve” on the objects
“Advanced” tab.

3.5 Migration from other Zope Database Adapters

This section explains a few things to consider when migrating from other
Zope Database Adapters to the mxODBC Zope DA.

3.5.1 General Notes

The mxODBC Zope DA offers quite a few connection options which allow
customizing the connection objects to various needs. If you run into a
problem during the migration phase, please check whether you can use
these options to work-around the problem without having to change your
Zope code.

38

3.5 Migration from other Zope Database Adapters

3.5.2 Migration from the ZODBC DA

For many years, the ZODBC DA has been the only available ODBC
database adapter for Zope. If you use the ZODBC DA in production, you
will find that it is far slower than the mxODBC Zope DA and it doesn't
provide nearly as many professional features as the latter. Furthermore, the
Z ODBC DA is only available for the Windows platform, whereas the
mxODBC Zope DA runs on most commonly used Zope platforms. such as
Windows, Linux, FreeBSD and Solaris, providing the same functionality and
interfaces on all supported platforms.

Migration from the ZODBC DA to mxODBC Zope DA can be done by
simply recreating the database connection objects using the mxODBC Zope
DA as basis.

In some cases, you will find that the mxODBC Zope DA returns data
differently than the ZODBC DA. This is due to the more advanced way of
fetching data in the mxODBC Zope DA, e.g. it supports multiple result sets
and many more data types such as native Unicode whereas the ZODBC DA
only supports strings.

To make sure that the new connection behaves in the same way as the old
ZODBC DA one, please create a table in your database which uses all
column types you are using in your Zope application and compare the
results from mxODBC Zope DA and ZODBC DA.

Typical cases to check are:

• Format of date/time values. If these are different, try enabling the
"Fetch TIME columns as strings" connection option.

• Format of float values. If these come out truncated to integers, try
enabling the "Leave scale 0 floats untouched" connection option.

• Stored procedures don't return any result set or a wrong one. If this
is the case, try enabling the connection option "Fetch last available
result set".

• Output of NULL values has changed. If your application displays
NULL values as "None" on the output screens after you have
switched to the mxODBC Zope DA, the Zope adapter you
previously used, fetched SQL NULL values as empty string. To have
the mxODBC Zope DA expose the same behavior, enable the
"Fetch NULL values as empty string" option.

39

mxODBC Zope DA - The Zope ODBC Database Adapter

3.5.3 Migration from the unofficial mxODBC Zope DA

Some years ago, there was an unofficial Zope Database Adapter available
for mxODBC called ZmxODBCDA. This Zope DA was shipped together
with mxODBC binaries, but without a proper redistribution license and was
thus illegal to use.

However, since the unofficial DA was in already in wide-spread use, eGenix
decided to make the official mxODBC Zope DA compatible to this DA.

Migration from the no longer available ZmxODBCDA to mxODBC Zope DA
can be done by simply recreating the database connection objects using the
official DA.

There are no known incompatibilities between ZmxODBCDA and the
mxODBC Zope DA. The latter is much more robust and provides many
more advanced features not available in ZmxODBCDA.

3.5.4 Migration from ZMySQLDA

MySQL ships with ODBC drivers for the database which can be used
together with the mxODBC Zope DA. Even older MySQL databases which
did not have transaction management can be used together with the
mxODBC Zope DA, by disabling the transaction management in mxODBC
Zope DA3. This is done by enabling the connection option "Use Auto-
Commit" in the connection object management interface.

If you want to run ZMySQLDA and the mxODBC Zope DA in parallel, you
should be aware that ZMySQLDA will start to use the mxDateTime product
which is part of the mxODBC Zope DA for fetching date/time values.

This can confuse Zope and cause your MySQL Zope code to fail, e.g.
passing a date value as mxDateTime DateTime instance to the Zope
DateTime constructor can fail. On the other hand, programming against the
mxDateTime instances can be easier in some cases and also provides more
features.

Here's an example:

<span class="text"
tal:content="python:DateTime(items.date_submitted).strftime('%d/%m/
%Y')">21/01/03

3 You should note that operating a database without transactions in read/write-mode
can result in severe data corruption as a result of a Zope request not being completed
properly. We strongly suggest to either only access MySQL non-transactional
databases read-only or to upgrade to a transactional MySQL database.

40

3.5 Migration from other Zope Database Adapters

This code can be written differently with the mxDateTime package
installed:

<span class="text"
tal:content="python:items.date_submitted.strftime('%d/%m/%Y')">21/0
1/03

The reason is that date_submitted will be an mxDateTime DateTime
instance which provides the requested .strftime() method directly.

 Configuring mxODBC Zope DA to return mxDateTime Instances

Even though the mxODBC Zope DA converts all mxDateTime instances
fetched from the underlying mxODBC interface to Zope DateTime
instances per default, it can also be configured to return mxDateTime
instances directly, just as in the example above.

To have a connection return mxDateTime instances directly, please select
the "mxDateTime" date/time format in the connection object management
interface.

41

mxODBC Zope DA - The Zope ODBC Database Adapter

4. Usage

The mxODBC Zope DA Connection objects are designed to be usage
compatible to most other available Zope database connections, so using
them should be straight forward if you already know how to work with
relational databases under Zope.

Special care was taken to make the mxODBC Zope DA connection a drop-
in replacement for Zope's own simplistic ZODBC database adapter which is
much less performant and robust.

4.1 Opening and Closing the Connection

The mxODBC Zope DA Connection object keep persistent state about the
connectivity information, i.e. the information whether a connection was put
in open or closed state is maintained across Zope restarts (unlike with
other Zope DAs).

The mxODBC Zope DA maintains the state at four levels:

• Closed: the connection is closed, no resources are used

• Connect on demand: the connection to the data source is not
open, but will be opened when Zope needs a data source
connection.

• Open: the connection has the open state, but no physical
connection to the data source could be established. This is a
special state meant to ease problem recovery in production
systems. The connection will only use this state for open
connections that failed to connect on load. It is not a persistent
state.

• Connected: the connection to the data source is open.

You can determine the current state of a Connection by checking the
connection management status screen.

42

4.1 Opening and Closing the Connection

4.1.1 Opening a Connection

To open the connection, simply press the button Open Connection . Note
that the button is only visible in case the connection is closed.

If the connection object was configured to "Use Connect on Demand", you
may also see a checkbox next to the button "on Demand".

If you select the "on Demand" option, the connection will be put into the
"Connect on Demand" state. This can help save resources, since the

43

mxODBC Zope DA - The Zope ODBC Database Adapter

connection will only be connecting to the database in case there is demand
for it.

When testing the configuration you should uncheck the "on Demand"
checkbox. This will cause the physical connection to be opened and you
will be able to see any error messages this might cause for the purpose of
debugging the database setup.

4.1.2 Closing a Connection

To close a connected connection object, simply press the
 Close Connection button on the status screen:

44

4.1 Opening and Closing the Connection

Note that under heavy load, the physical connections may not be freed
immediately. This is due to the multi-threaded nature of Zope. Opening
and closing the connection again usually helps in these rare cases.

45

mxODBC Zope DA - The Zope ODBC Database Adapter

4.2 Testing the Connection

After you have created a connection object, you can test the connection by
clicking on the "Test" tab of the connection object’s management page and
entering an SQL query.

The connection has to be open for the test query tab to work.

The results should be displayed as table after pressing the Execute Query
button. Note that only the first 20 rows are displayed.

46

4.3 Copying and Moving Connection Objects

4.3 Copying and Moving Connection Objects

Moving connections is possible for all connections (open and closed) and
can be done in the usual way provided by the Zope Management Interface.

Copying is only possible for closed connection objects. This precaution is
taken to avoid problems with two connection objects using the same
physical connection pool.

4.4 Z SQL Methods

The mxODBC Zope DA is fully compatible with Zope SQL methods.

The creation dialog of Z SQL Methods will automatically pick up the
available connections in the current folder and the parent folders.

47

mxODBC Zope DA - The Zope ODBC Database Adapter

4.5 Limitations

These limitations are known:

• Depending on you ODBC driver, it may not be possible to safely
use more than one physical connection for a logical connection.

Please consult your ODBC driver documentation for details on
executing statements in parallel and its multi-threaded capabilities.

Modern ODBC drivers usually don't have a problem with this at all,
but some of the older drivers or ones which are not implemented
in a thread-safe way, may have problems with this.

The mxODBC Zope DA does protect physical connections using
thread locks to make sure that not 100% thread-safe ODBC drivers
are still usable, but it is always recommended to use at least ODBC
3.0 compliant ODBC drivers (which have to be implemented
thread-safe on platforms supporting threads).

48

5.1 Object Classes

5. Python Interface

The mxODBC Zope DA does not only interface to Z SQL Methods, it also
provides an extensive Python API which you can use directly in your Zope
applications.

5.1 Object Classes

These APIs are available through the Products.mxODBCZopeDA.ZopeDA
module.

5.1.1 Class "Products.mxODBCZopeDA.ZopeDA.DatabaseConnection"

mxODBC handled connection to an ODBC data source under Zope
Transaction Manager control.

These are the physical connections to the data sources. There can be more
than one connection for a logical Zope connection, since these allow
pooling connections.

Base class(es): Shared.DC.ZRDB.TM.TM

Attributes:

.DatabasePackage

mxODBC database subpackage module to use. Defaults to the platform
specific default subpackage.

.SQL = None

SQL codes defined by the mxODBC subpackage; this is initialized to
.DatabasePackage.SQL.

.connection = None

mxODBC connection object.

.connection_string = ''

Connection string defining the connection.

49

mxODBC Zope DA - The Zope ODBC Database Adapter

.connection_timezone = ''

Connection timezone.

.datetime_format = 0

Date/time format to use. Possible values: 0 - Zope DateTime, 1 -
mxDateTime, 2 - Python datetime, 3 - Python tuples, 4 - Python strings.

.decimal_format = 0

Decimal format to use. Possible values: 0 - Python floats, 1- Python
decimals.

.dont_fix_floats = 0

Automatically convert scale 0 floats to integers; some drivers like e.g.
SAP DB can return scale 0 for floats even though the value does have
scale.

.fetch_last_result_set = 0

Always fetch the last available result set (rather than the first) ?

.ignore_max_rows = 0

Flag to ignore the max_rows parameter in all queries.

.ignore_warnings = 0

Flag to ignore mxODBC warnings.

.messages = None

List of error and warning messages generated by mxODBC.

.null_as_empty_string = 0

Convert fetched NULL values to empty strings.

.record_messages_only = 0

Flag to tell the error handler to not raise any exceptions for errors and
warnings.

.shortint_as_int = 0

Fetch short integers (e.g. SMALLINT) as INTEGER. This helps
workaround bugs in some drivers which have problems with fetching
unsigned shorts.

.string_encoding = ''

String encoding to use for Unicode / 8-bit string conversion. This must
be set to an encoding known to Python. Empty for the Python default
encoding.

50

5.1 Object Classes

.string_format = 0

String format to use. Possible values: 0 - 8-bit strings, 1 - Unicode, 2 -
mixed 8-bit and Unicode.

.time_as_string = 0

Fetch TIME values as string instead of as DateTime value (with the date
part set to the current day).

.use_auto_commit = 0

Run the connection in auto-commit mode (without transactions) ?

.use_lazy_connect = 0

Use connect on demand for this connection object ? If turned on, the
connection will not automatically reconnect when being loaded from the
ZODB.

.zopetype = None

Dictionary mapping mxODBC column type codes to Zope ones.

Methods:

.__init__(connection_string='', subpackage=None, **options)

Create a DatabaseConnection object for the given connection_string.

subpackage defines the mxODBC subpackage to use for the connection
(as string, e.g. ‘Windows’ maps to mx.ODBC.Windows). If not given,
the platform default is used.

Additional keyword parameters may be given to enable work-arounds
for specific problems. The following keywords are currently supported:

ignore_warnings = boolean_flag

Don’t raise exceptions for database warnings, just append them to
the .messages list.

ignore_max_rows = boolean_flag

Ignore the max_rows parameter in all queries. This will cause the
queries to always return the complete result set.

connection_timezone = timezone_string

Sets the timezone to assume when for fetching date/time data from
the connection.

time_as_string = boolean_flag

Fetch SQL.TIME values are strings (instead of DateTime values with
the date part set to the current day)

51

mxODBC Zope DA - The Zope ODBC Database Adapter

datetime_format = format_code

Fetch date/time values in different ways.

decimal_format = format_code

Fetch decimal in different ways.

string_format = format_code

Fetch string values in different ways.

string_encoding = encoding_string

Encoding to use for strings on the connection.

shortint_as_int = boolean_flag

Fetch short integers as integers (instead of as short integers).

null_as_empty_string = boolean_flag

Fetch NULL values as empty string.

dont_fix_floats = boolean_flag

Default is to automatically convert float values which the database
says have scale 0 to integers. Enabling this flag causes floats to be left
untouched.

use_auto_commit = boolean_flag

Run the connection in auto-commit mode (without transactions).
Default is to use transactional mode, but not all ODBC data sources
support this.

use_lazy_connect = boolean_flag

Use lazy connect for this connection object ? Enabling this option
results in the connection being established on demand rather than at
object load time. Default is not to use lazy connects.

fetch_last_result_set = boolean_flag

When fetching results, try to fetch the last result set rather then the
first (default). This can become important when working with stored
procedure which often generate multiple result sets.

.alive()

Check the connection state.

.build_query_result(rowset, description)

Takes a rowset and a description tuple as returned from mxODBC
cursors and builds a result tuple as needed by Zope.

description may be None to signal the non-availability of a result set.

52

5.1 Object Classes

This method is used internally by the mxODBC Zope DA, but may also
be of use to subclasses you create.

.callproc(procname, *args)

Calls the database procedure procname using the given arguments and
return a tuple (args, resultsets).

args is either None or the possibly modified list of arguments. resultsets
is a list of Zope Results instances holding all available result sets
generated by the procedure.

Note that the Zope DA currently does not support multiple result sets,
so the list will always just have length 1.

.close()

Close the connection.

Errors are ignored.

.columninfos(qualifier=None, owner=None, table=None, column=None)

Returns a list of dictionaries describing the columns of the database
table that matches the given parameters.

The information returned by this method is more complete than what
you get from the .columns() method.

For an explanation of the result set, please see the documentation for
mxODBC's cursor.columns() method.

.columnprivileges(qualifier=None, owner=None, table=None,
column=None)

Returns a list of dictionaries describing the privileges assigned to the
database column that match the given parameters.

For an explanation of the result set, please see the documentation for
mxODBC's cursor.columnprivileges() method.

.columns(table_name)

Returns a list of dictionaries with entries 'Name', 'Type', 'Precision',
'Scale', 'Nullable' ('with Null' or '') for each column in the table
table_name.

.connect()

Connect to the database.

This method may also be used to reconnect to the database.

.connected()

Is the DatabaseConnection currently connected ?

53

mxODBC Zope DA - The Zope ODBC Database Adapter

.errorhandler(connection, cursor, errorclass, errorvalue)

Default mxODBC error handler.

Note: connection and cursor refer to the mxODBC objects, not the
Zope database adapter ones.

The default error handler reports all errors and warnings using
exceptions and also records these in self.messages as list of tuples
(errorclass, errorvalue).

.execute(sql, params=(), max_rows=None, direct=-1)

Process an SQL query sql using the parameters given in the sequence
params and return at max max_rows (defaults to all rows) of results
back to Zope.

sql has to use the '?' marker as positional parameter marker, e.g. "select
* from table where col1=?, col2=?". The first parameter will get bound
to the first '?' marker (col1), the second parameter to the second '?'
(col2) and so on.

If direct is given, mxODBC will use direct, unprepared execution for the
SQL query in case it is set to 1 (True) and prepared execution in case it
is set to 0 (False).

The return value is a tuple (columns, rowset) with columns being a
Zope specific list of dictionaries describing the column types and rowset
a list of row tuples (in the order given in the columns definition).

Using this form of query interface has the advantage of allowing the
ODBC driver to do the escaping of the data passed to the database. The
standard .query() interface only works with SQL statements which have
the data included verbatim and properly quoted.

Possible values for max_rows:

• 0, None: fetch all rows in the result set

• < 0: don’t fetch any rows from the result set

• n: fetch at most n rows from the result set

Note that max_rows is ignored if the option .ignore_max_rows is true.

.executemany(sql, paramsbatch=(), max_rows=None)

Process an SQL query sql using the parameter batch given in the
sequence of sequences paramsbatch and return at max max_rows
(defaults to all rows) of results back to Zope.

Each sequence of parameters in paramsbatch is executed against the sql
query in an optimized way. This makes it possible to e.g. insert a few
hundred rows of data with one call to the database interface.

54

5.1 Object Classes

sql has to use the '?' marker as positional parameter marker, e.g. "select
* from table where col1=?, col2=?". The first parameter will get bound
to the first '?' marker (col1), the second parameter to the second '?'
(col2) and so on.

If there is a result set, the return value is a tuple (columns, rowset) with
columns being a Zope specific list of dictionaries describing the column
types and rowset a list of row tuples (in the order given in the columns
definition).

Using this form of query interface has the advantage of allowing the
ODBC driver to do the escaping of the data passed to the database. The
standard .query() interface only works with SQL statements which have
the data included verbatim and properly quoted.

Possible values for max_rows:

• 0, None: fetch all rows in the result set

• < 0: don’t fetch any rows from the result set

• n: fetch at most n rows from the result set

Note that max_rows is ignored if the option .ignore_max_rows is true.

.foreignkeys(primary_qualifier=None, primary_owner=None,
pimary_table=None, foreign_qualifier=None, foreign_owner=None,
foreign_table=None)

Returns a list of dictionaries describing the foreign keys of the database
table(s) that match the given parameters.

For an explanation of the result set, please see the documentation for
mxODBC's cursor.foreignkeys() method.

.gettypeinfo(sqltypecode)

Returns a list of dictionaries describing the SQL type code given in
sqltypecode.

For an explanation of the result set, please see the documentation for
mxODBC's cursor.gettypeinfo() method.

.primarykeys(qualifier=None, owner=None, table=None)

Returns a list of dictionaries describing the primary keys of the database
tables that match the given parameters.

For an explanation of the result set, please see the documentation for
mxODBC's cursor.primarykeys() method.

55

mxODBC Zope DA - The Zope ODBC Database Adapter

.procedurecolumns(qualifier=None, owner=None, procedure=None,
column=None)

Returns a list of dictionaries describing the database procedure
parameter columns of the database procedures that match the given
parameters.

For an explanation of the result set, please see the documentation for
mxODBC's cursor.procedurecolumns() method.

.procedures(qualifier=None, owner=None, procedure=None)

Returns a list of dictionaries describing the database procedures stored
in the database which match the given parameters.

For an explanation of the result set, please see the documentation for
mxODBC's cursor.procedures() method.

.query(sql, max_rows=None)

Process an SQL query sql and return at max max_rows (defaults
to all rows) of results back to Zope.

The return value is a tuple (columns, rowset) with columns being a
Zope specific list of dictionaries describing the column types and rowset
a list of row tuples (in the order given in the columns definition).

Multiple SQL statements may be concatenated using '\0' (<dtml-var
sql_delimiter> is mapped to '\0' in Z SQL Methods). These will be
executed one at a time. Note that only the last statement may generate a
result set.

Possible values for max_rows:

• 0, None: fetch all rows in the result set

• < 0: don’t fetch any rows from the result set

• n: fetch at most n rows from the result set

.run_cursor_callback(callback, max_rows=None, **kws)

Process a cursor callback and return at max. max_rows (defaults to all
rows) of the result set and the description list as returned from
mxODBC.

The callback is called with the mxODBC cursor as first argument and
any additional keyword arguments passed to this method. It should
implement the query call, e.g. use .execute() or one of the catalog
methods to generate a result set on the cursor.

This method is used internally by the mxODBC Zope DA, but may also
be of use to subclasses you create.

Possible values for max_rows:

• 0, None: fetch all rows in the result set

56

5.1 Object Classes

• < 0: don’t fetch any rows from the result set

• n: fetch at most n rows from the result set

Note that max_rows is ignored if the option .ignore_max_rows is true.

.set_errorhandler(errorhandler=None)

Set mxODBC error handler to errorhandler.

The errorhandler must be a function accepting the following arguments:
connection, cursor, errorclass, errorvalue. connection and cursor refer
to the mxODBC objects, not the Zope database adapter ones.

Without argument, the method resets the error handler to the default
one defined in the class definition.

The default error handler reports all errors and warnings using
exceptions and also records these in self.messages as list of tuples
(errorclass, errorvalue).

.specialcolumns(qualifier=None, owner=None, table=None,
coltype=None, scope=None, nullable=None)

Returns a list of dictionaries describing special columns of the database
tables that match the given parameters.

Special columns are e.g. those that qualify as primary keys or row
identifier.

For an explanation of the result set, please see the documentation for
mxODBC's cursor.specialcolumns() method.

.statistics(qualifier=None, owner=None, table=None, unique=None,
accuracy=None)

Returns a list of dictionaries providing statistics about the database
tables that match the given parameters.

For an explanation of the result set, please see the documentation for
mxODBC's cursor.statistics() method.

.tableprivileges(qualifier=None, owner=None, table=None)

Returns a list of dictionaries describing the privileges assigned to the
database tables that match the given parameters.

For an explanation of the result set, please see the documentation for
mxODBC's cursor.tableprivileges() method.

.tables(qualifier=None, owner=None, name=None, type=None)

Returns a list of dictionaries describing the database tables that match
the given parameters.

For an explanation of the result set, please see the documentation for
mxODBC's cursor.tables() method.

57

mxODBC Zope DA - The Zope ODBC Database Adapter

5.1.2 ExtensionClass "Products.mxODBCZopeDA.ZopeDA.ZopeConnection"

mxODBC Zope DA Connection.

Logical Zope connection object. This object manages a configurable
number of physical database connections.

Base class(es): Shared.DC.ZRDB.Connection.Connection

Attributes:

.DatabaseConnection = Class
"Products.mxODBCZopeDA.ZopeDA.DatabaseConnection"

Class to use for the physical database connections. Note that only
subclasses of the default class are allowed here, since they are managed
in an internal connection pool.

._isAnSQLConnection = 1

Indicator needed for Z SQL Method compatibility.

._v_database_connection = None

.DatabaseConnection object.

.closed = 1

Is this logical connection in a closed state ?

.connection_string = ''

Connection string to use.

.connection_timezone = ''

Connection timezone to use.

.database_type = 'mxODBC'

Database type.

.icon = 'misc_/mxODBCZopeDA/connection_icon'

Icon.

.id = 'eGenix_mxODBC_Database_Connection'

Default Object ID.

.ignore_warnings = 0

Ignore database warnings ?

.ignore_max_rows = 0

Ignore max_rows query parameter ?

58

5.1 Object Classes

.implementation_version = ''

ZopeConnection implementation version. This is used for automatic
upgrade of existing mxODBC Zope DA Connections after a software
upgrade.

.license = 'EVALUATION USE CPU License for Evaluation User [#1]'

License string. This is read directly from the mxODBC license module.

.manage_close_connection__roles__ = ('Manager',)

Close connection roles.

.manage_edit__roles__ = ('Manager',)

Edit connection roles.

.manage_main = <DTMLFile instance at 82ef4d8>

DTMLFile for the management dialog.

.manage_main__roles__ = ('Manager',)

Management dialog roles.

.manage_properties = <DTMLFile instance at 82f7800>

DTMLFile for the properties dialog.

.manage_properties__roles__ = ('Manager',)

Properties dialog roles.

.manage_testForm = <DTMLFile instance at 8270b58>

DTMLFile for the test dialog.

.manage_testForm__roles__ = ('Manager',)

Test form roles.

.manage_test__roles__ = ('Manager',)

Test dialog roles.

.meta_type = 'eGenix mxODBC Database Connection'

Name of the Product object type.

.pool_size = 1

Pool size (number of physical DatabaseConnections to set up in the
pool).

.subpackage = None

mxODBC subpackage to use for this connection.

59

mxODBC Zope DA - The Zope ODBC Database Adapter

.title = 'eGenix mxODBC Database Connection'

Default title of the object.

Methods:

.__init__(id, title, connection_string, connection_check=None,
pool_size=1, subpackage=None, **options)

Create a ZopeConnection object managing access to the data source
connection_string having the given id and title.

If connection_check is true, the connection is given the open state and
kept open by Zope—even across restarts.

pool_size may be given as integer and defines how many physical
DatabaseConnection objects should be managed and opened by this
ZopeConnection object.

subpackage defines the mxODBC subpackage to use for the connection
(as string, e.g. ‘Windows’ maps to mx.ODBC.Windows). If not given,
the platform default is used.

Additional keyword parameters may be given to enable work-arounds
for specific problems on the underlying DatabaseConnection object.
Please see the documentation for DatabaseConnection for details.

.__call__(*ignore)

Return a physical DatabaseConnection object, possibly connecting first
if the connection is not marked as closed.

._canCopy(operation=0)

Do we allow copying ?

operation is 0 for copying, 1 for moving.

Only non-connected connections are copyable. All connections are
movable.

.close()

Close the DatabaseConnection(s).

Errors are ignored.

.connect(connection_string=None)

Connect to the database using the given connection_string.

This first closes any open physical connections and then opens
.pool_size new ones.

.connected(allow_lazy_connects=1)

Is the object connected ?

60

5.1 Object Classes

Returns the following states:

• 0 - connection is closed

• 1 - connection to the data source is established

• 2 - connection to the data source is currently not established,
but a connection will be made on demand (lazy state)

State 2 is only returned in case allow_lazy_connects is true (default). If
allow_lazy_connects is false, then on demand connections are reported
as being closed (state 0).

.connection_dsn()

Return the DSN name of the current connection.

.connection_info()

Return a string giving some details about the connected DBMS and
ODBC driver.

.connection_state()

Returns the connection state as string:

• 'closed' - connection is closed

• 'connected' - connection to the data source is established

• 'on demand' - connection to the data source is currently not
established, but a connection will be made on demand (lazy
state)

This method is useful for GUI style status reports.

.connection_time()

Returns the connection time as Zope DateTime instance or None in case
the connection is not established.

.current_pool_size()

Return the current DatabaseConnection pool size for this kind of
ZopeConnection.

.database_connection(*ignore)

Return a physical DatabaseConnection object, possibly connecting first
if the connection is not marked as closed.

.edit(title, connection_string, check_connection=1,
connection_timezone='', pool_size=1, subpackage=None,
ignore_warnings=0, time_as_string=0, shortint_as_int=0,
dont_fix_floats=0, use_auto_commit=0, fetch_last_result_set=0,
null_as_empty_string=0, ignore_max_rows=0)

(Re)Init the object with the given attributes.

61

mxODBC Zope DA - The Zope ODBC Database Adapter

See .__init__() for documentation of the attributes.

Note: Always use keyword parameters for this function, since the API
may change between Zope DA versions !

.get_connection()

Get a working, preferably unused DatabaseConnection object.

If no such connections exist in the pool, the method will try to restablish
the connections or open new ones.

.lazy_connect()

Puts the object into the lazy connected state.

Lazy connected objects look like connected ones, but only establish a
real database connection on demand, i.e. when the object is asked for a
DatabaseConnection object.

If the object is already connected to the data source, no further action is
taken and the state is not changed.

.manage_close_connection(REQUEST)

Management interface to close the connection.

Note: Always use keyword parameters for this function, since the API
may change between Zope DA versions !

.manage_edit(title, connection_string, check_connection=0,
connection_timezone='', pool_size=1, subpackage=None,
ignore_warnings=0, time_as_string=0, shortint_as_int=0,
dont_fix_floats=0, use_auto_commit=0, fetch_last_result_set=0,
datetime_as_mxdatetime=0, use_lazy_connect=0,
null_as_empty_string=0, ignore_max_rows=0, REQUEST=None)

Edit connection settings.

Note: Always use keyword parameters for this function, since the API
may change between Zope DA versions !

.manage_open_connection(lazy_connect=0, REQUEST=None)

Management interface to open the connection.

Note: Always use keyword parameters for this function, since the API
may change between Zope DA versions !

.manage_test(query, query_start=None, REQUEST=None)

Executes an SQL query on the ZopeConnection and returns the results.

Only the first 20 rows are shown.

Note: Always use keyword parameters for this function, since the API
may change between Zope DA versions !

62

5.2 Errors

.upgrade_object()

Upgrade object from a previous mxODBC Zope DA version to the
installed one.

5.2 Errors

The interface defines and uses these Python exception objects.

5.2.1 Class "Products.mxODBCZopeDA.ZopeDA.DatabaseConnectionError"

Database connection error.

This exception is raised in case a database connection cannot be
established.

Base class(es): exceptions.StandardError

5.2.2 Class "Products.mxODBCZopeDA.ZopeDA.ReplayTransaction"

Replay the current transaction after having rolled back any changes.

Raising this exception will cause Zope to retry the complete transaction.
This can be useful in case a database connection was lost.

Base class(es): ZODB.POSException.ConflictError

5.2.3 Class "Products.mxODBCZopeDA.ZopeDA.BadRequest"

Bad Request Error used to signal errors to the user.

Base class(es): exceptions.StandardError

Attributes:

.maxlinelength = 80

Wrap long lines exceeding this length.

.template = '\n <table cellspacing="0" cellpadding="5"
width="100%%">\n <th align="left" valign="top"
bgcolor="#DDAAAA" colspan="3">\n <font size="+1"

63

mxODBC Zope DA - The Zope ODBC Database Adapter

color="#000000">EGENIX<font
color="#990000">.COM\n mxOD ...

HTML template snippet.

Methods:

.__init__(title, message, *args)

Create and initialize the object

64

6.1 Windows Platform

6. The mxODBC Interface

The mxODBC Zope DA is built on top of the well-known mxODBC Python
ODBC Extension Interface which is available for Windows and Unix
platforms.

After mxODBC Zope DA installation, the low-level mxODBC interface is
available in Zope as package mx.ODBC with the platform specific
subpackages explained in the next sections.

When using mxODBC directly you should be aware that the transaction
mechanism of the low-level mxODBC connections is not tied into the Zope
transaction mechanism. The mxODBC Zope DA implements this feature,
so you should always access mxODBC through the DA rather than directly
when you need transaction safety for Zope extensions.

Please see the mxODBC documentation for details on the low-level aspects
of ODBC programming.

Note: The included mx.ODBC package is only available and usable from
within Zope. For stand-alone installations, please see the mxODBC product
page.

6.1 Windows Platform

mxODBC Zope DA for Windows only ships with the mx.ODBC.Windows
subpackage of mxODBC.

Other database subpackages supported by mxODBC on Windows are not
available in the mxODBC Zope DA.

6.2 Unix Platform

mxODBC Zope DA binary packages for Unix only ship with the
mx.ODBC.iODBC and mx.ODBC.unixODBC subpackages of mxODBC.

65

http://www.egenix.com/products/python/mxODBC/
http://www.egenix.com/products/python/mxODBC/
http://www.egenix.com/products/python/mxODBC/
http://www.egenix.com/products/python/mxODBC/

mxODBC Zope DA - The Zope ODBC Database Adapter

The other database subpackages supported by mxODBC are not available
in the mxODBC Zope DA.

6.3 Mac OS X Platform

mxODBC Zope DA binary packages for Mac OS X only ship with the
mx.ODBC.iODBC and mx.ODBC.unixODBC subpackages of mxODBC.
iODBC uses the system-provided ODBC Administrator, while unixODBC is
an optional separate installation on Mac OS X.

The other database subpackages supported by mxODBC are not available
in the mxODBC Zope DA.

66

7.1 eGenix.com Commercial License

7. Copyrights & Licenses

Please see the LICENSE/COPYRIGHT files in each package’s subdirectory
for information on copyright, licensing conditions and authorized use of the
respective package.

The egenix-mx-base part of the package (e.g. mxTextTools and
mxDateTime) is distributed under the eGenix.com Public License and the
egenix-mx-commercial (e.g. mxODBC) while the mxODBC Zope Database
Adapter is distributed under the eGenix.com Commercial License.

If in doubt, please check the web-site at http://www.egenix.com or contact
licenses@egenix.com for more information on copyright, licensing
conditions and authorized use.

eGenix.com Software, Skills and Services GmbH
Pastor-Loeh-Str. 48
D-40764 Langenfeld
Germany

7.1 eGenix.com Commercial License

This is the eGenix.com Commercial License Agreement which covers the
mxODBC and mxODBC Zope DA software and documentation.

EGENIX.COM COMMERCIAL LICENSE AGREEMENT

Version 1.2.0

1. Introduction

This “License Agreement” is between eGenix.com Software, Skills and
Services GmbH (“eGenix.com”), having an office at Pastor-Loeh-Str. 48, D-
40764 Langenfeld, Germany, and the Individual or Organization
(“Licensee”) accessing and otherwise using this software in source or
binary form and its associated documentation (“the Software”).

67

http://www.egenix.com/
mailto:licenses@egenix.com

mxODBC Zope DA - The Zope ODBC Database Adapter

2. Terms and Definitions

The “Software” covered under this License Agreement includes without
limitation, all object code, source code, help files, publications,
documentation and other programs, products or tools that are included in
the official “Software Distribution” available from eGenix.com.

The “Proof of Authorization” for the Software is a written and signed notice
from eGenix.com providing evidence of the extent of authorizations the
Licensee has acquired to use the Software and of Licensee’s eligibility for
future upgrade program prices (if announced) and potential special or
promotional opportunities. As such, the Proof of Authorization becomes
part of this License Agreement.

Installation of the Software (“Installation”) refers to the process of
unpacking or copying the files included in the Software Distribution to an
Installation Target.

“Installation Target” refers to the target of an installation operation. Targets
are defined as follows:

1) “CPU” refers to a central processing unit which is able to store
and/or execute the Software (a server, personal computer, or other
computer-like device) using at most two (2) processors,

2) “Site” refers to a single site of a company,
3) “Corporate” refers to an unlimited number of sites of the company,
4) “Developer CPU” refers to a single CPU used by at most one (1)

developer.

When installing the Software on a server CPU for use by other CPUs in a
network, Licensee must obtain a License for the server CPU and for all
client CPUs attached to the network which will make use of the Software
by copying the Software in binary or source form from the server into their
CPU memory. If a CPU makes use of more than two (2) processors,
Licensee must obtain additional CPU licenses to cover the total number of
installed processors. Likewise, if a Developer CPU is used by more than
one developer, Licensee must obtain additional Developer CPU licenses to
cover the total number of developers using the CPU.

“Commercial Environment” refers to any application environment which is
aimed at directly or indirectly generating profit. This includes, without
limitation, for-profit organizations, private educational institutions, work as
independent contractor, consultant and other profit generating relationships
with organizations or individuals. Governments and related agencies or
organizations are also regarded as being Commercial Environments.

“Non-Commercial Environments” are all those application environments
which do not directly or indirectly generate profit. Public educational

68

7.1 eGenix.com Commercial License

institutions and officially acknowledged private non-profit organizations are
regarded as being Non-Commercial Environments in the aforementioned
sense.

“Educational Environments“ are all those application environments which
directly aim at educating children, pupils or students. This includes, without
limitation, class room installations and student server installations which
are intended to be used by students for educational purposes. Installations
aimed at administrational or organizational purposes are not regarded as
Educational Environment.

3. License Grant

Subject to the terms and conditions of this License Agreement, eGenix.com
hereby grants Licensee a non-exclusive, world-wide license to

1) use the Software to the extent of authorizations Licensee has
acquired and

2) distribute, make and install copies to support the level of use
authorized, providing Licensee reproduces this License Agreement
and any other legends of ownership on each copy, or partial copy, of
the Software.

If Licensee acquires this Software as a program upgrade, Licensee’s
authorization to use the Software from which Licensee upgraded is
terminated.

Licensee will ensure that anyone who uses the Software does so only in
compliance with the terms of this License Agreement.

Licensee may not

1) use, copy, install, compile, modify, or distribute the Software except
as provided in this License Agreement;

2) reverse assemble, reverse engineer, reverse compile, or otherwise
translate the Software except as specifically permitted by law without
the possibility of contractual waiver; or

3) rent, sublicense or lease the Software.

4. Authorizations

The extent of authorization depends on the ownership of a Proof of
Authorization for the Software.

Usage of the Software for any other purpose not explicitly covered by this
License Agreement or granted by the Proof of Authorization is not
permitted and requires the written prior permission from eGenix.com.

69

mxODBC Zope DA - The Zope ODBC Database Adapter

5. Modifications

Software modifications may only be distributed in form of patches to the
original files contained in the Software Distribution.

The patches must be accompanied by a legend of origin and ownership and
a visible message stating that the patches are not original Software
delivered by eGenix.com, nor that eGenix.com can be held liable for
possible damages related directly or indirectly to the patches if they are
applied to the Software.

6. Experimental Code or Features

The Software may include components containing experimental code or
features which may be modified substantially before becoming generally
available.

These experimental components or features may not be at the level of
performance or compatibility of generally available eGenix.com products.
eGenix.com does not guarantee that any of the experimental components
or features contained in the eGenix.com will ever be made generally
available.

7. Expiration and License Control Devices

Components of the Software may contain disabling or license control
devices that will prevent them from being used after the expiration of a
period of time or on Installation Targets for which no license was obtained.

Licensee will not tamper with these disabling devices or the components.
Licensee will take precautions to avoid any loss of data that might result
when the components can no longer be used.

8. NO WARRANTY

eGenix.com is making the Software available to Licensee on an “AS IS”
basis. SUBJECT TO ANY STATUTORY WARRANTIES WHICH CAN NOT BE
EXCLUDED, EGENIX.COM MAKES NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, EGENIX.COM MAKES NO AND DISCLAIMS ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE
WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

70

7.1 eGenix.com Commercial License

9. LIMITATION OF LIABILITY

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO
EVENT SHALL EGENIX.COM BE LIABLE TO LICENSEE OR ANY OTHER
USERS OF THE SOFTWARE FOR (I) ANY INCIDENTAL, SPECIAL, OR
CONSEQUENTIAL DAMAGES OR LOSS (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER
PECUNIARY LOSS) AS A RESULT OF USING, MODIFYING OR
DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF; OR (II) ANY AMOUNTS IN
EXCESS OF THE AGGREGATE AMOUNTS PAID TO EGENIX.COM UNDER
THIS LICENSE AGREEMENT DURING THE TWELVE (12) MONTH PERIOD
PRECEEDING THE DATE THE CAUSE OF ACTION AROSE.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE
ABOVE EXCLUSION OR LIMITATION MAY NOT APPLY TO LICENSEE.

10. Termination

This License Agreement will automatically terminate upon a material breach
of its terms and conditions if not cured within thirty (30) days of written
notice by eGenix.com. Upon termination, Licensee shall discontinue use
and remove all installed copies of the Software.

11. Indemnification

Licensee hereby agrees to indemnify eGenix.com against and hold harmless
eGenix.com from any claims, lawsuits or other losses that arise out of
Licensee’s breach of any provision of this License Agreement.

12. Third Party Rights

Any software or documentation in source or binary form provided along
with the Software that is associated with a separate license agreement is
licensed to Licensee under the terms of that license agreement. This License
Agreement does not apply to those portions of the Software. Copies of the
third party licenses are included in the Software Distribution.

13. High Risk Activities

The Software is not fault-tolerant and is not designed, manufactured or
intended for use or resale as on-line control equipment in hazardous

71

mxODBC Zope DA - The Zope ODBC Database Adapter

environments requiring fail-safe performance, such as in the operation of
nuclear facilities, aircraft navigation or communication systems, air traffic
control, direct life support machines, or weapons systems, in which the
failure of the Software, or any software, tool, process, or service that was
developed using the Software, could lead directly to death, personal injury,
or severe physical or environmental damage (“High Risk Activities”).

Accordingly, eGenix.com specifically disclaims any express or implied
warranty of fitness for High Risk Activities.

Licensee agree that eGenix.com will not be liable for any claims or damages
arising from the use of the Software, or any software, tool, process, or
service that was developed using the Software, in such applications.

14. General

Nothing in this License Agreement affects any statutory rights of consumers
that cannot be waived or limited by contract.

Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between eGenix.com
and Licensee.

If any provision of this License Agreement shall be unlawful, void, or for any
reason unenforceable, such provision shall be modified to the extent
necessary to render it enforceable without losing its intent, or, if no such
modification is possible, be severed from this License Agreement and shall
not affect the validity and enforceability of the remaining provisions of this
License Agreement.

This License Agreement shall be governed by and interpreted in all respects
by the law of Germany, excluding conflict of law provisions. It shall not be
governed by the United Nations Convention on Contracts for International
Sale of Goods.

This License Agreement does not grant permission to use eGenix.com
trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party.

The controlling language of this License Agreement is English. If Licensee
has received a translation into another language, it has been provided for
Licensee’s convenience only.

72

7.1 eGenix.com Commercial License

15. Agreement

By downloading, copying, installing or otherwise using the Software,
Licensee agrees to be bound by the terms and conditions of this License
Agreement.

For question regarding this License Agreement, please write to:

eGenix.com Software, Skills and Services GmbH

Pastor-Loeh-Str. 48

D-40764 Langenfeld

Germany

73

mxODBC Zope DA - The Zope ODBC Database Adapter

EGENIX.COM PROOF OF AUTHORIZATION

1 CPU License (Example)

This is an example of a "Proof of Authorization" for a 1 CPU License. These
proofs are either wet-signed by the eGenix.com staff or digitally PGP-signed
using an official eGenix.com PGP-key.

1. License Grant

eGenix.com Software, Skills and Services GmbH (“eGenix.com”), having an
office at Pastor-Loeh-Str. 48, D-40764 Langenfeld, Germany, hereby grants
the Individual or Organization (“Licensee”)

Licensee: <name of the licensee>

a non-exclusive, world-wide license to use the software listed below in
source or binary form and its associated documentation (“the Software”)
under the terms and conditions of this License Agreement and to the
extent authorized by this Proof of Authorization.

2. Covered Software

Software Name: <product name>

Software Version: <product version>

 (including all patch level releases)

Software Distribution: As officially made available by

 eGenix.com on http://www.egenix.com/

Operating System: any compatible operating system

3. Authorizations

eGenix.com hereby authorizes Licensee to copy, install, compile, modify
and use the Software on the following Installation Targets under the terms
of this License Agreement.

Installation Targets: one (1) CPU

74

http://www.egenix.com/

7.1 eGenix.com Commercial License

Use of the Software for any other purpose or redistribution IS NOT
PERMITTED BY THIS PROOF OF AUTHORIZATION.

4. Proof

This Proof of Authorization was issued by

<name>, <title>

Langenfeld, <date>

Proof of Authorization Key:

<license key>

75

mxODBC Zope DA - The Zope ODBC Database Adapter

EGENIX.COM PROOF OF AUTHORIZATION

1 Developer CPU License (Example)

This is an example of a "Proof of Authorization" for a 1 Developer CPU
License. These proofs are either wet-signed by the eGenix.com staff or
digitally PGP-signed using an official eGenix.com PGP-key.

5. License Grant

eGenix.com Software, Skills and Services GmbH (“eGenix.com”), having an
office at Pastor-Loeh-Str. 48, D-40764 Langenfeld, Germany, hereby grants
the Individual or Organization (“Licensee”)

Licensee: <name of the licensee>

a non-exclusive, world-wide license to use the software listed below in
source or binary form and its associated documentation (“the Software”)
under the terms and conditions of this License Agreement and to the extent
authorized by this Proof of Authorization.

6. Covered Software

Software Name: <product name>

Software Version: <product version>

 (including all patch level releases)

Software Distribution: As officially made available by

 eGenix.com on http://www.egenix.com/

Operating System: any compatible operating system

7. Authorizations

7.1 Application Development

eGenix.com hereby authorizes Licensee to copy, install, compile, modify
and use the Software on the following Developer Installation Targets for the
purpose of developing products using the Software as integral part.

76

http://www.egenix.com/

7.1 eGenix.com Commercial License

Developer Installation Targets: one (1) Developer
CPU

7.2 Redistribution

eGenix.com hereby authorizes Licensee to redistribute the Software
bundled with a product developed by Licensee on the Developer
Installation Targets ("the Product") subject to the terms and conditions of
this License Agreement for installation and use in combination with the
Product on the following Redistribution Installation Targets, provided that:

1. Licensee shall not and shall not permit or assist any third party to
sell or distribute the Software as a separate product;

2. Licensee shall not and shall not permit any third party to

i. market, sell or distribute the Software to any end user
except subject to the terms and conditions of this License
Agreement,

ii. rent, sell, lease or otherwise transfer the Software or any
part thereof or use it for the benefit of any third party,

iii. use the Software outside the Product or for any other
purpose not expressly licensed hereunder;

3. the Product does not provide functions or capabilities similar to
those of the Software itself, i.e. the Product does not introduce
commercial competition for the Software as sold by eGenix.com;

4. Licensee has obtained Developer CPU Licenses for all developers
and CPUs used in developing the Product.

Redistribution Installation Targets:

any number of CPUs capable of running the Product and the Software

8. Proof

This Proof of Authorization was issued by

<name>, <title>

Langenfeld, <date>

77

mxODBC Zope DA - The Zope ODBC Database Adapter

78

Proof of Authorization Key:

<license key>

	Introduction
	Features
	Requirements
	
	Windows
	Unix
	Mac OS X

	Installation
	Download the Software
	Automatic download
	Manual download
	Platform (Windows, Linux, Solaris, FreeBSD)
	Python Build Version (2.5 , 2.6, etc.)
	Python Build Architecture (32 bit or 64 bit)
	Unicode Variant (UCS2 or UCS4)

	Installation in Zope 2.12 and later
	Before You Start
	Upgrading
	License Files

	Step-by-step Installation Guide
	Step 1
	Step 2
	Step 3
	Step 4

	Configuration
	ODBC Data Source Configuration
	General Notes
	Connection Pooling by the ODBC Manager

	Windows Platform
	Unix Platform
	Mac OS X Platform

	ODBC Driver/Manager Troubleshooting
	Windows ODBC Manager
	Unix iODBC / unixODBC Manager
	Microsoft Access ODBC Driver
	IBM DB2 ODBC Driver
	SAP DB ODBC Driver
	FreeTDS ODBC Driver (access MS SQL Server from Linux)
	PostgreSQL ODBC Driver
	Other ODBC Drivers and Manager Setups
	Stored Procedures

	Creating mxODBC Zope DA Connections
	Adding mxODBC Zope DA Connection Objects
	Choosing an ODBC Manager/Driver
	Database Connection String
	Database Timezone
	Connection Pool Size
	Connection Options
	Open Connection
	Create Connection
	Connection Status
	Open/closed state of connection objects
	Error messages

	Configuring mxODBC Zope DA Connections
	Choosing an ODBC Manager/Driver
	Database Connection String
	Database Timezone
	Connection Pool Size
	Connection Options
	Interface Options
	Format Options
	Result Set Options

	Migration from other Zope Database Adapters
	General Notes
	Migration from the ZODBC DA
	Migration from the unofficial mxODBC Zope DA
	Migration from ZMySQLDA

	Usage
	Opening and Closing the Connection
	Opening a Connection
	Closing a Connection

	Testing the Connection
	Copying and Moving Connection Objects
	Z SQL Methods
	Limitations

	Python Interface
	Object Classes
	Class "Products.mxODBCZopeDA.ZopeDA.DatabaseConnection"
	ExtensionClass "Products.mxODBCZopeDA.ZopeDA.ZopeConnection"

	Errors
	Class "Products.mxODBCZopeDA.ZopeDA.DatabaseConnectionError"
	Class "Products.mxODBCZopeDA.ZopeDA.ReplayTransaction"
	Class "Products.mxODBCZopeDA.ZopeDA.BadRequest"

	The mxODBC Interface
	Windows Platform
	Unix Platform
	Mac OS X Platform

	Copyrights & Licenses
	eGenix.com Commercial License

