
Object Access Control
for Python

VVVersion 3.1 eerrssiioonn 33..11

mmxxPPrrooxxyy

Copyright  1998-2000 by IKDS Marc-André Lemburg, Langenfeld
Copyright  2000-2008 by eGenix.com GmbH, Langenfeld

All rights reserved. No part of this work may be reproduced or used in a any form or
by any means without written permission of the publisher.

All product names and logos are trademarks of their respective owners. The product
names "mxBeeBase", "mxCGIPython", "mxCounter", "mxCrypto", "mxDateTime",
"mxHTMLTools", "mxLicenseManager", "mxLog", "mxNumber", "mxODBC",
"mxObjectStore", "mxProxy", "mxQueue", "mxStack", "mxTextTools", "mxTidy",
"mxTools", "mxUID", "mxURL", "mxXMLTools", "eGenix Application Server",
"PythonHTML", "eGenix" and "eGenix.com" and corresponding logos are trademarks of
eGenix.com GmbH, Langenfeld.

Printed in Germany.

Contents

Contents

1. Introduction .. 1
1.1 Object Reference: Weak or Strong... 1
1.2 Access Protocol ... 2
1.3 Cleanup Protocol ... 3
1.4 Implicit Access .. 3
1.5 Weak References ... 4

2. mx.Proxy.Proxy Object .. 6
2.1 Proxy Object Constructors .. 6
2.2 Proxy Object Instance Methods... 7
2.3 Proxy Object Instance Variables .. 8

3. mx.Proxy Functions ... 9

4. mx.Proxy Constants..10

5. Examples of Use ...11

6. Package Structure ...12

7. Support ..13

8. Copyright & License ...14

1. Introduction

1. Introduction

You've probably ran into that problem too while writing an application with
multi-user access: Python has no apparent way to effectively hide attributes
from unauthorized access other than running in an restricted environment
(which isn't supported anymore in Python 2.1 and up) or using the standard
lib's Bastion object wrapper.

Since using the restricted mode is not an option anymore or can't be used
due to being too restrictive (e.g. your code does assignments to __class__
and __dict__ in a few vital places), we've created a new type that hides
Python object attributes away in the C implementation. These attributes are
not accessible from within Python. Of course, a debugger will give you
access and some special extension module that knows about the internal
structure of the types could too. But for most applications, this level
security suffices.

Instead of creating a special Bastion-like type we decided to write a more
generic and extendable version of a Proxy object. The object itself doesn't
provide too much functionality, but it effectively hides the wrapped object
and provides controlled access to its attributes.

1.1 Object Reference: Weak or Strong

Another nice feature that a proxy object allows you to implement, is that of
weak references, i.e. references to objects that don't prevent them to be
garbage collected.

Since Python uses a reference count garbage collection scheme, circular
references cause memory leakage as soon as the reference to the cycle is
dropped (the involved objects are not garbage collected because their
reference count never drops to zero).

Even though Python does have weak reference support for a number of
basic types nowadays1, this support only works if the referencing objects
know how to handle weak references. mxProxy object by contrast can be
used to create weak references to any Python object and store them in any
Python object container or attribute.

1 It didn’t support weak references at the time mxProxy was written. The weak
reference implementation in Python was in part inspired by mxProxy.

1

mxProxy - Object Access Control for Python

There are two flavors of Proxy object references: strong references which
act just like any other reference you use to the object in Python and weak
references. The WeakProxy() constructor must be used for the latter.
Details are described in section 1.5 Weak References below.

1.2 Access Protocol

To control access to the wrapped objects attributes and methods, the Proxy
provides two features:

• Access is only granted if the attributes name appears in a special
interface list of accessible names.

• Public access can be further controlled if the object provides the
methods .__public_getattr__() and/or
.__public_setattr__().

The access scheme first checks the interface list. If given, only attributes
with names appearing in it can be set or fetched. All other accesses are
cancelled by raising an AccessError exception (which is a subclass of the
standard AttributeError).

The presence of the interface list also indicates whether methods that are to
be returned to the requesting object should be Proxy-wrapped on-the-fly or
not. Wrapped methods only have the callable slot enabled, thus inhibiting
access to the enclosed object reference.

In case an attribute it to be fetched, the Proxy checks the availability of a
.__public_getattr__() method. If found, this method is called with the
name as parameter and whatever this method returns is returned to the
requesting object. Otherwise, the Proxy uses the standard getattr()-
functionality to fetch the attribute.

Setting attributes is done in a similar way: the Proxy checks the availability
of a .__public_setattr__() method. If found, this method is called with
parameters name and value. Otherwise, the standard setattr()
functionality is used.

2

1. Introduction

1.3 Cleanup Protocol

While Python provides support for garbage collection nowadays, it is still
possible to create systems of cyclically referenced objects that the built-in
mechanism cannot collect. Since these reference loops cannot
automatically be broken by the system, the user has to provide means of
breaking the circles at the proper places. One such place is the object
destructor of objects that explicitly contain such references.

The Proxy object can be used to provide an indirect pointer into such a
circle of objects that reference each other. When the system deletes the
Proxy object, its destructor tries to find a special method .__cleanup__()
in the wrapped object and calls it before continuing the destruction. This
allows the object to break the reference circles, e.g. by performing a
self.__dict__.clear() or something similar.

Errors raised in .__cleanup__() calls are ignored. Warnings are printed to
stderr in case Python is run in verbose mode (python -v) and tracebacks
printed if run in debug mode (python -d).

1.4 Implicit Access

On many occasions object attributes are not explicitly accessed by e.g.
using object.attribute, but indirect through built-in functions or the
interpreter itself. This poses a problem to the Proxy, since there are
different ways to reach an objects implementation. For Python instances all
important hooks are reachable via getattr(), e.g. .__len__() and
.__add__(). This is different for extension and built-in types: they use a
system of slots for providing access to their data.

Proxy objects also allow managing the type slot interface for most
applications. This means that you can transparently use the Proxy to wrap
built-in types such as lists or tuples and use the Proxy just like you would
use the referenced built-in object itself.

Since Proxies are about access management, you can also restrict access to
these slots. For simplicity, the names you have to use for different slots are
exactly those you would define for Python classes, e.g. the length slot is
named '__len__', the sequence and mapping get item slot are grouped
under the name '__getitem__'. These names have to be explicitly stated in
the interface list you pass to the Proxy constructor when creating the proxy
in case you do define an interface list. If you don't specify such a list, no
direct interface restriction is applied.

3

mxProxy - Object Access Control for Python

These type slot names are defined:

Generic:

__call__, __hash__, __str__, __cmp__

Mapping:

__getitem__, __setitem__, __len__

Sequence:

__add__, __repeat__, __getitem__, __getslice__
__setitem__, __getitem__

Number:

__add__, __sub__, __mul__, __div__ __mod__, __divmod__,
__pow__, __neg__, __pos__, __abs__, __true__ __invert__,
__lshift__, __rshift__, __and__, __str__, __or__, __int__
__long__, __float__

Note: number coercion does not yet work, so most of these are
currently useless !

Omissions currently are: __coerce__, __hex__ and __oct__. __repr__
is handled by the Proxy object itself since it would otherwise possibly
expose address information about the underlying object.

Proxies also work transparently for Python instances. To achieve this,
another proxy-like object which is a real Python instance has to be put in
front of the Proxy object. Access to this instance then gets translated into
getattr()-calls by the interpreter, these calls are filtered through the
Proxy and the wrapped instance object's attribute then gets accessed in the
usual way. The result is passed back to the requesting object.

1.5 Weak References

Proxy objects work in two modes: keeping a strong or a weak reference to
the object. The Proxy() constructor returns a Proxy object using a strong
reference, the WeakProxy() constructor one using a weak reference.

Weak references are called weak because they don't keep the object alive
by incrementing the reference count on the referenced object. Since objects
get garbage collected when this reference count falls down to 0, a weak
reference can become invalid at any time. The mxProxy implementation

4

1. Introduction

raises a LostReferenceError in case a weak reference to such an object is
used.

This may sound like a pretty flaky feature at first, but the main pro
argument for these weak references is that you can build up circular
references without having to fear about them not being properly garbage
collected. Using strong references (which do increment the reference count
and thus keep the object alive as long as the reference is around) would
produce cycles in the referencing scheme which the Python garbage
collection (GC) mechanism cannot automatically break causing the cycle to
become unreachable from the Python namespaces: a severe memory leak.

Weak references in mxProxy work by using a global dictionary of all objects
handled through weak reference Proxies. This dictionary is checked prior to
every action on a weak Proxy and after its deletion. You can also force a
check by calling the checkweakrefs() anytime you like, e.g. at regular
intervals.

The dictionary holds a strong reference to the object keeping it alive until
the next check is done. During the check all handled objects are inspected
to see if their reference count has gone down to 1 (phantom objects: only
the dictionary references them). If this is the case, all weak proxies are
marked defunct and the object is removed from the dictionary causing it to
be garbage collected by the Python GC mechanism. All subsequent actions
on the weak references to this object will then cause a
LostReferenceError exception to be raised.

5

mxProxy - Object Access Control for Python

2. mx.Proxy.Proxy Object

The Proxy object implements all of the above and provides the following
interface.

2.1 Proxy Object Constructors

These constructors are available in the package:

Proxy(object,interface=None,passobj=None)

Returns a new Proxy instance that wraps object.

interface can be given as sequence of strings and/or objects with
__name__ attribute or as dictionary with string keys (only the keys are
currently used) and tells the Proxy to only allow access to these names.
If not given or None, no filtering is done by the Proxy (see above on
how access is managed).

passobj can be provided to retrieve the wrapped object from the Proxy
at a later point using the .proxy_object() method.

InstanceProxy(object,interface=None,passobj=None)

Same as above, except that a Python instance wraps the Proxy object.

This makes the Proxy transparent for access to wrapped Python
instances, meaning that the Proxy will act as if it were the wrapped
object itself (with the added features mentioned above).

CachingInstanceProxy(object,interface=None,passobj=None)

Same as InstanceProxy(), except that a read cache is used by the
Proxy which caches all queried attributes in the Proxy instance's
dictionary.

Note that this may introduce circular references if not used properly.
Cached attributes are not looked up in the wrapped instance after the
first lookup -- if their value changes, this won't be noticed by objects
that access the object through this wrapper.

SelectiveCachingInstanceProxy(object,interface=None,passobj=None)

Same as InstanceProxy(), except that a read cache is used by the
Proxy which caches certain queried attributes in the Proxy instance's
dictionary depending on their type.

6

2. mx.Proxy.Proxy Object

The cached types are defined by the .proxy_cacheable_types
attribute. It defaults to only cache Python methods.

MethodCachingProxy(object,interface=None,passobj=None)

Alias for SelectiveCachingInstanceProxy().

ReadonlyInstanceProxy(object,interface=None,passobj=None)

Same as InstanceProxy(), except that write access will result in an
AccessError being raised

ProxyFactory(Class,interface=None)

Returns a factory object for producing Class instances that are
automatically wrapped using Proxy-instances.

interface is passed to the Proxy constructor, pass-objects are not
supported.

InstanceProxyFactory(Class,interface=None)

Returns a factory object for producing Class instances that are
automatically wrapped using InstanceProxy-instances.

WeakProxy(object,interface=None,passobj=None)

Returns a new weak referencing Proxy instance that points to object.

interface can be given as sequence of strings and/or objects with
__name__ attribute or as dictionary with string keys (only the keys are
currently used) and tells the Proxy to only allow access to these names.
If not given or None, no filtering is done by the Proxy (see above on
how access is managed).

passobj can be provided to retrieve the wrapped object from the Proxy
at a later point using the .proxy_object() method.

For details on weak references and how they work, see section 1.5
Weak References.

2.2 Proxy Object Instance Methods

A Proxy instance proxy defines these methods in addition to the ones
available through restricted access to the wrapped object:

.proxy_defunct()

Return 1 iff the referenced object has already been garbage collected.

7

mxProxy - Object Access Control for Python

.proxy_getattr(name)

Same as getattr(proxy,name).

.proxy_object(passobj)

Returns the wrapped object provided the given passobj is identical to
the one used for creating the Proxy.

Simple equality is not enough -- it has to be the same object.

.proxy_setattr(name,value)

Same as setattr(proxy,name,value).

Note that all attribute names starting with 'proxy_' are interpreted as
being Proxy attributes and are not passed to the wrapped object. Access
to these attributes is not subject to the restrictions explained above.

2.3 Proxy Object Instance Variables

Proxy instances do not provide any instance variables themselves. They do
provide restricted access to the variables of the wrapped object though.

Note that all attribute names starting with 'proxy_' are interpreted as
being Proxy attributes and are not passed to the wrapped object. Also,
access to these attributes is not subject to the restrictions explained
above.

8

3. mx.Proxy Functions

3. mx.Proxy Functions

These functions are available:

checkweakrefs()

Calling this function causes the global dictionary used for managing
weak references to be checked for phantom objects. If such objects are
found, they are garbage collected during the call and weak referencing
Proxies pointing to them are defunct.

Weak references cause the objects to stay alive until either a proxy is
used on them (causing an exception), a proxy referencing them is
deleted or this function is called. To ensure the timely garbage collection
of the objects, call this function at regular intervals.

finalizeweakrefs()

For internal use only:
Forces finalization of the weak reference implementation. Subsequent
usage of weak references will cause errors to be raised.

Calling this function after finalization is not an error.

initweakrefs()

For internal use only:
Initializes or reinitializes the weak reference implementation. This first
forces a finalization of the previous state if the implementation has
already been used and then starts again with a clean weak reference
dictionary.

9

mxProxy - Object Access Control for Python

4. mx.Proxy Constants

These constants are available:

AccessError

Exception object used for access specific errors that the module raises.
It is a subclass of AttributeError.

10

5. Examples of Use

5. Examples of Use

Here is a very simple one:

from mx import Proxy

class DataRecord:
 a = 2
 b = 3

 # Make read-only:
 def __public_setattr__(self,what,to):
 raise Proxy.AccessError('read-only')

 # Cleanup protocol
 def __cleanup__(self):
 print 'cleaning up',self

o = DataRecord()

Wrap the instance:
p = Proxy.InstanceProxy(o,('a',))
Remove o from the accessible system:
del o

print 'Read p.a through Proxy:',p.a

This will cause an exception, because the object is read-only
p.a = 3

This will cause an exception, because no access is given to .b
print p.b

Clear all traces of the provious exceptions (they might contain
references to p) by issuing another one. Note that not doing
so will cause the following 'del p' to not destroy the final
reference to p... (don't ask why).
1/0

Deleting the Proxy will also delete the wrapped object, if there
is no other reference to it in the system. It will invoke
the __cleanup__ method in that case.
del p

If you want to have the wrapping done automatically, you can use
the InstanceProxyFactory:
DataRecord = Proxy.InstanceProxyFactory(DataRecord,('a',))

This gives the same behaviour...
p = DataRecord()
print p.a
p.a = 3
print p.b

More examples will eventually appear in the Examples subdirectory of the
package.

11

mxProxy - Object Access Control for Python

6. Package Structure

[Proxy]
 Doc/
 Examples/
 [mxProxy]
 Proxy.py

Entries enclosed in brackets are packages (i.e. they are directories that
include a __init__.py file). Ones without brackets are just simple
subdirectories that are not accessible via import.

The package imports all symbols from the Proxy sub module which in turn
imports the extension module, so you only need to 'from mx import
Proxy' to start working.

12

7. Support

7. Support

eGenix.com is providing commercial support for this package. If you are
interested in receiving information about this service please see the
eGenix.com Support Conditions.

13

http://www.egenix.com/files/python/eGenix-mx-Extensions.html

mxProxy - Object Access Control for Python

8. Copyright & License

© 1998-2000, Copyright by IKDS Marc-André Lemburg; All Rights
Reserved. mailto: mal@lemburg.com

© 2001-2008, Copyright by eGenix.com Software GmbH, Langenfeld,
Germany; All Rights Reserved. mailto: info@egenix.com

This software is covered by the eGenix.com Public License Agreement,
which is included in the following section. The text of the license is also
included as file "LICENSE" in the package's main directory.

By downloading, copying, installing or otherwise using the software, you
agree to be bound by the terms and conditions of the following eGenix.com
Public License Agreement.

14

mailto:mal@lemburg.com
mailto:info@egenix.com

8. Copyright & License

EGENIX.COM PUBLIC LICENSE AGREEMENT

Version 1.1.0

This license agreement is based on the Python CNRI License Agreement, a
widely accepted open-source license.

1. Introduction

This "License Agreement" is between eGenix.com Software, Skills and
Services GmbH ("eGenix.com"), having an office at Pastor-Loeh-Str. 48, D-
40764 Langenfeld, Germany, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. License

Subject to the terms and conditions of this eGenix.com Public License
Agreement, eGenix.com hereby grants Licensee a non-exclusive, royalty-
free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the
Software alone or in any derivative version, provided, however, that the
eGenix.com Public License Agreement is retained in the Software, or in any
derivative version of the Software prepared by Licensee.

3. NO WARRANTY

eGenix.com is making the Software available to Licensee on an "AS IS"
basis. SUBJECT TO ANY STATUTORY WARRANTIES WHICH CAN NOT BE
EXCLUDED, EGENIX.COM MAKES NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, EGENIX.COM MAKES NO AND DISCLAIMS ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE
WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. LIMITATION OF LIABILITY

EGENIX.COM SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS
OF THE SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR
CONSEQUENTIAL DAMAGES OR LOSS (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER
PECUNIARY LOSS) AS A RESULT OF USING, MODIFYING OR

15

http://www.opensource.org/licenses/pythonpl.php

mxProxy - Object Access Control for Python

DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE
ABOVE EXCLUSION OR LIMITATION MAY NOT APPLY TO LICENSEE.

5. Termination

This License Agreement will automatically terminate upon a material breach
of its terms and conditions.

6. Third Party Rights

Any software or documentation in source or binary form provided along
with the Software that is associated with a separate license agreement is
licensed to Licensee under the terms of that license agreement. This License
Agreement does not apply to those portions of the Software. Copies of the
third party licenses are included in the Software Distribution.

7. General

Nothing in this License Agreement affects any statutory rights of consumers
that cannot be waived or limited by contract.

Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between eGenix.com
and Licensee.

If any provision of this License Agreement shall be unlawful, void, or for any
reason unenforceable, such provision shall be modified to the extent
necessary to render it enforceable without losing its intent, or, if no such
modification is possible, be severed from this License Agreement and shall
not affect the validity and enforceability of the remaining provisions of this
License Agreement.

This License Agreement shall be governed by and interpreted in all respects
by the law of Germany, excluding conflict of law provisions. It shall not be
governed by the United Nations Convention on Contracts for International
Sale of Goods.

This License Agreement does not grant permission to use eGenix.com
trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party.

16

8. Copyright & License

17

The controlling language of this License Agreement is English. If Licensee
has received a translation into another language, it has been provided for
Licensee's convenience only.

8. Agreement

By downloading, copying, installing or otherwise using the Software,
Licensee agrees to be bound by the terms and conditions of this License
Agreement.

For question regarding this License Agreement, please write to:

eGenix.com Software, Skills and Services GmbH

Pastor-Loeh-Str. 48

D-40764 Langenfeld

Germany

	Introduction
	Object Reference: Weak or Strong
	Access Protocol
	Cleanup Protocol
	Implicit Access
	Weak References

	mx.Proxy.Proxy Object
	Proxy Object Constructors
	Proxy Object Instance Methods
	Proxy Object Instance Variables

	mx.Proxy Functions
	mx.Proxy Constants
	Examples of Use
	Package Structure
	Support
	Copyright & License

