
Flexible URL Data-Type
for Python

VVVersion 3.2 eerrssiioonn 33..22

mmxxUURRLL

Copyright 2001-2013 by eGenix.com GmbH, Langenfeld

All rights reserved. No part of this work may be reproduced or used in a any form or
by any means without written permission of the publisher.

All product names and logos are trademarks of their respective owners.

The product names "mxBeeBase", "mxCGIPython", "mxCounter", "mxCrypto",
"mxDateTime", "mxHTMLTools", "mxIP", "mxLicenseManager", "mxLog", "mxNumber",
"mxODBC", "mxODBC Connect", "mxODBC Zope DA", "mxObjectStore", "mxProxy",
"mxQueue", "mxStack", "mxTextTools", "mxTidy", "mxTools", "mxUID", "mxURL",
"mxXMLTools", "eGenix Application Server", "PythonHTML", "eGenix" and
"eGenix.com" and corresponding logos are trademarks or registered trademarks of
eGenix.com GmbH, Langenfeld

Printed in Germany.

Contents

Contents

1. Introduction .. 1

2. mx.URL.URL Object... 2
2.1 URL Parts... 2
2.2 Predefined URL schemes ... 3
2.3 Joining URLs .. 4
2.4 Using URL objects with strings .. 5
2.5 mx.URL.URL Object Constructors ... 6
2.6 mx.URL.URL Object Instance Variables ... 6
2.7 mx.URL.URL Object Instance Methods.. 8

3. mx.URL Functions ..10

4. mx.URL Constants ..12

5. Examples of Use ...13

6. Package Structure ...14

7. Support ..15

8. Copyright & License ...16

1. Introduction

1. Introduction

This package provides a new datatype for storing and manipulating URL
values as well as a few helpers related to URL building, encoding and
decoding.

The main intention of the package is to provide an easy to use, fast and
lightweight datatype for Universal Resource Locators. The W3C now calls
these URIs -- Universal Resource Identifiers.

1

mxURL - Flexible URL Data-Type for Python

2. mx.URL.URL Object

To simplify and speed up handling URLs the package provides a new type
to work with them in an object oriented way.

URL objects can be added to each other as well as right added to strings
giving a joined URL object in both cases. The join semantics depend on the
URL schemes and their attributes.

2.1 URL Parts

The URL parts are defined as follows:

scheme://user:passwd@host:port/path;params?query#fragment

Whether or not certain parts of the URL are required depends on the
scheme.

scheme

URL scheme defining the network resource type.

user

User name

passwd

Password

host

Host name

port

Port number.

Schemes usually define a default port, so providing a port is usually not
necessary.

path

Path to the resource using the slash ('/') as path component separator.

params

Optional parameters.

2

2. mx.URL.URL Object

These are rarely used and not always supported by all applications
dealing with URLs.

query

Query part, usually in the format key=value with key-value-pairs
separated by ampersands (&).

fragment

If a URL refers to part of a document, the fragment indicates the name
of the part.

Note that we abbreviate the network location part
(//user:passwd@host:port/) as netloc.

2.2 Predefined URL schemes

These schemes are predefined by the module. The function
register_scheme() (see above) allows adding new ones or changing the
behavior for predefined ones.

Scheme uses_netloc uses_params uses_query uses_fragment uses_relative

http 1 1 1 1 1

https 1 1 1 1 1

shttp 1 1 1 1 1

mailto 0 0 1 0 0

ftp 1 1 0 1 1

gopher 1 0 0 1 1

news 1 0 0 1 1

nntp 1 0 0 0 1

telnet 1 0 0 1 0

3

mxURL - Flexible URL Data-Type for Python

Scheme uses_netloc uses_params uses_query uses_fragment uses_relative

file 1 0 0 0 1

about 0 0 0 0 0

javascript 0 0 0 0 0

ldap 1 0 0 0 0

svn+ssh 1 0 0 0 1

The uses_* fields are integers 0 or 1 representing the schemes
possibilities. When a feature is set to 0 the corresponding field is left out
while parsing the URL. Characters which would normally be seen as
separators are ignored then.

uses_relative is important when joining URLs. Only URLs with
uses_relative will have their paths joined according to the common
rules.

Note that the URL object constructors will raise a ValueError exception
for unknown schemes they find in the construction string.

2.3 Joining URLs

One of the most common operations when dealing with URLs is to join a
URL part to a base URL.

In mxURL, this operation is triggered by simply adding two URL objects, or
simply adding a string to a left-hand URL object. The result will be a new
URL object.

mxURL tries to follow the standard RFC 3986 in most detail, but doesn't
implement all cases.1

1 See the included mx/URL/mxURL/test.py for details. We will gradually update
mxURL to fully support the RFCs in upcoming versions. If you find important features
missing, please report them.

4

2. mx.URL.URL Object

Examples

>>> from mx.URL import URL
>>> URL('http://egenix.com/') + URL('products/python')
<URL:http://egenix.com/products/python>
>>> URL('http://egenix.com/') + URL('products/python/mxBase')
<URL:http://egenix.com/products/python/mxBase>
>>> URL('http://egenix.com/products/python') +
URL('../../services') <URL:http://egenix.com/services>
>>> URL('http://egenix.com/products/python') +
URL('../../../services')
<URL:http://egenix.com/services>
>>> URL('http://egenix.com/products/python') +
URL('https://egenix.com') <URL:https://egenix.com>
>>> URL('/products/python') + URL('../../services')
<URL:/services>
>>> URL('/products/python') + URL('../services')
<URL:/services>
>>> URL('a') + URL('b')
<URL:b>
>>> URL('a/') + URL('b')
<URL:a/b>
>>> URL('a/') + URL('b/')
<URL:a/b/>
>>> URL('/a/') + URL('b/')
<URL:/a/b/>
>>> URL('/a') + URL('b/')
<URL:/b/>

2.4 Using URL objects with strings

URL objects accept addition with strings when used on the left-hand side.
mxURL will first convert the string to an URL object and then apply the
operation.

It is also possible to convert URL objects back to strings using the str()
constructor or the %s formatting parameter. Conversion to Unicode is also
possible, using the unicode() or %s formatting parameter in a Unicode
string.

Interaction between URL objects and strings:

>>> URL('http://egenix.com/products/python') +
URL('../../services')
<URL:http://egenix.com/services>
>>> URL('http://egenix.com/products/python') + '../../services'
<URL:http://egenix.com/services>
>>> u = URL('http://egenix.com/products/python') + '../../services'
>>> str(u)
'http://egenix.com/services'

5

mxURL - Flexible URL Data-Type for Python

Using strings on the left-hand side of the addition does not work2:

>>> 'http://egenix.com/products/python' + URL('../../services')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'URL' objects

2.5 mx.URL.URL Object Constructors

These constructors are available in the package:

URL(url)

Create a new URL object from url. Takes either a string or another URL
as argument. The url is stored normalized.

RawURL(url)

Create a new URL object from url. Takes either a string or another URL
as argument. The url is not normalized but stored as-is.

BuildURL(scheme='', netloc='', path='', params='', query='',
fragment='')

Create a new URL object from the given parameters. The url is stored
normalized. This constructor can handle keywords.

Normalizing means that unnecessary relative components and slashes are
removed from the URL prior to storing it. The stored URL will always be
equivalent to the one given to the constructor.

The URL type uses a scheme feature dictionary to figure out how to parse
different schemes. Use the mx.URL.add_scheme() function to access
this dictionary.

2.6 mx.URL.URL Object Instance Variables

A URL instance url provides access to these (read-only) variables:

.absolute

1 iff the object's path is absolute; 0 otherwise.

2 We may add this functionality in a future version of mxURL.

6

2. mx.URL.URL Object

.base

Base part of the URL's path: everything excluding a possibly given file
with extension.

.ext

Extension (without dot) of the file given in the URL converted to
lowercase letters.

The extension is defined as the last dotted part of the filename. In some
cases, this may clash with the way the OS uses filenames, e.g. on Unix it
is common to hide files by using a dot as first character of the filename.

.file

File name of the file pointed to by the URL. Directories are not included.

.fragment

Fragment part of the URL without the '#'.

.host

Hostname included in the network location part of the URL
(//user:passwd@host:port/) or ''.

.mimetype

The MIME type as string ("major/minor") or "*/*" if it cannot be
determined. The package uses the types_map dictionary of the Python
standard lib's mimetype module as basis for finding out the MIME type.
You can add entries to that dictionary at runtime to adapt the
mechanism to your needs.

.netloc

Network location as given in the URL without the leading '//' and
possibly terminating '/'. Username and password are included if given
(//user:passwd@host:port/).

.normal

1 iff the object's path has been normalized; 0 otherwise.

.params

Parameter section of the URL without the ';'.

.passwd

Password included in the network location part of the URL
(//user:passwd@host:port/) or ''.

7

mxURL - Flexible URL Data-Type for Python

.path

Path as given in the URL. If the URL contains a netloc part this will
always start with a '/'.

.port

Port included in the network location part of the URL
(//user:passwd@host:port/) as integer.

.scheme

Access scheme without the terminating ':'.

.string

The complete URL as string.

.url

The complete URL as string. Alias for .string.

.user

Username included in the network location part of the URL
(//user:passwd@host:port/) or ''.

2.7 mx.URL.URL Object Instance Methods

A URL object url defines these methods:

.basic()

Return a new URL object pointing to the same base URL, but without
the parts params, query and fragment.

In case the url already fulfills this requirement, a new reference to it is
returned.

.depth()

Return the depth of the URL.

Depth is only defined if the URL is normalized and absolute. If the URL
is not absolute or contains relative components (e.g. /a/../b/) an error
will be raised.

The top level has depth 0.

.normalized()

Return a new URL object pointing to the same URL but normalized.

8

2. mx.URL.URL Object

.parsed()

Return a tuple (scheme, netloc, path, params, query,
fragment) just as urlparse.urlparse() does.

.pathentry(index)

Return the path entry index.

index may be negative to indicate an entry counted from the right (with
-1 being the rightmost entry). An IndexError is raised in case the index
lies out of range. Leading and trailing slashes are not counted.

.pathlen()

Return the path length as defined by the .pathentry() method.

Leading and trailing slashes are not counted.

.pathtuple()

Return the path as tuple of strings.

Leading and trailing slashes are ignored and the slashes are not
included.

.relative(baseURL)

Return a new URL object that when joined with baseURL results in the
same URL as the object itself.

URL and baseURL must both be absolute URLs for this to work. An
exception is raised otherwise.

The baseURL should provide scheme and netloc, because otherwise
joining might result in loss of scheme information. If only the URL
provides a scheme, then the returned relative URL will also include that
scheme.

Parameters, fragment and query of the URL object are preserved; only
the path is made relative and the netloc removed (relative paths and
netlocs don't go together).

In case both URLs provide schemes and/or netlocs that point to different
resources, the method simply returns a new reference to the object.

.rebuild(scheme='', netloc='', path='', params='', query='',
fragment='')

Return a new URL object created from the given parameters and the
URL object. This method can handle keywords.

Arguments not given are taken unchanged from the URL object.

9

mxURL - Flexible URL Data-Type for Python

3. mx.URL Functions

The mxURL package defines the following functions:

These functions are available.

addscheme(url)

Returns the URL url with scheme added according to common usage.

If the url already provides a scheme, nothing is changed. Strings are
turned into URL object by the function.

These conventions are used:

• www. -> http://www.

• ftp. -> ftp://ftp.

• [/.] -> file:[/.]

• none of these -> http://

escape(url)

Escape all special chars in a URL using %xx hex encodings.

queryencode(items, prefix='?')

Takes a sequence of key,value items and formats a URL encoded query
part out of it.

Keys and values are converted to string prior to URL conversion.

prefix is prepended to the resulting string. It defaults to '?' so that the
returned value can directly be concatenated to a URL.

querydecode(query)

Decodes a query string and returns a list of items (key, value).

If query is prefixed with a question mark ('?'), this is silently ignored.

Query parts which don't provide a value will get None assigned as value
in the items list.

quote(url)

Alias for escape().

register_mimetype(extension,major='*', minor='*')

Adds a new mime type to the registry used by mxURL.

10

3. mx.URL Functions

extension must be a file name extension including the delimiting dot
(e.g. ".html"). The function will overwrite any existing entry for the given
extension.

Note that mxURL uses the dictionary mimetypes.types_map as its
registry, so changes done with this function will be available through the
mimetypes module too.

register_scheme(scheme, uses_netloc, uses_params, uses_query,
uses_fragment, uses_relative)

Adds a new scheme to the URL objects scheme registry. See below for
an explanation of the parameters.

unescape(url)

Unescape a URL containing %xx-character encodings.

unquote(url)

Alias for unescape().

urlencode(url)

Alias for escape().

urldecode(url)

Alias for unescape().

urljoin(u,v)

Takes two URLs or strings, joins them and returns the result as URL
object (see below).

11

mxURL - Flexible URL Data-Type for Python

4. mx.URL Constants

Error

Error class used for package specific errors. It is a subclass of
StandardError.

12

5. Examples of Use

5. Examples of Use

Here is a very simple one:

from mx.URL import *
url = URL('http://search.python.org/query.html?qt=mx')
print url.scheme
>>> http
print url.host
>>> search.python.org
print url.query
>>> qt=mx
print url.path
>>> /query.html

More examples will eventually appear in the Examples/ subdirectory of the
package.

13

mxURL - Flexible URL Data-Type for Python

6. Package Structure

[URL]
 Doc/
 [mxURL]

 URL.py

Entries enclosed in brackets are packages (i.e. they are directories that
include a __init__.py file). Ones without brackets are just simple
subdirectories that are not accessible via import.

The package imports all symbols from the extension module, so you only
need to 'from mx import URL' to start working.

14

7. Support

7. Support

eGenix.com is providing commercial support for this package. If you are
interested in receiving information about this service please see the
eGenix.com Support Conditions.

15

http://www.egenix.com/files/python/eGenix-mx-Extensions.html

mxURL - Flexible URL Data-Type for Python

8. Copyright & License

© 2001-2013, Copyright by eGenix.com Software GmbH, Langenfeld,
Germany; All Rights Reserved. mailto: info@egenix.com

This software is covered by the eGenix.com Public License Agreement,
which is included in the following section. The text of the license is also
included as file "LICENSE" in the package's main directory.

By downloading, copying, installing or otherwise using the software, you
agree to be bound by the terms and conditions of the following eGenix.com
Public License Agreement.

16

mailto:info@egenix.com

8. Copyright & License

EGENIX.COM PUBLIC LICENSE AGREEMENT

Version 1.1.0

This license agreement is based on the Python CNRI License Agreement, a
widely accepted open-source license.

1. Introduction

This "License Agreement" is between eGenix.com Software, Skills and
Services GmbH ("eGenix.com"), having an office at Pastor-Loeh-Str. 48, D-
40764 Langenfeld, Germany, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. License

Subject to the terms and conditions of this eGenix.com Public License
Agreement, eGenix.com hereby grants Licensee a non-exclusive, royalty-
free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the
Software alone or in any derivative version, provided, however, that the
eGenix.com Public License Agreement is retained in the Software, or in any
derivative version of the Software prepared by Licensee.

3. NO WARRANTY

eGenix.com is making the Software available to Licensee on an "AS IS"
basis. SUBJECT TO ANY STATUTORY WARRANTIES WHICH CAN NOT BE
EXCLUDED, EGENIX.COM MAKES NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, EGENIX.COM MAKES NO AND DISCLAIMS ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE
WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. LIMITATION OF LIABILITY

EGENIX.COM SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS
OF THE SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR
CONSEQUENTIAL DAMAGES OR LOSS (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER
PECUNIARY LOSS) AS A RESULT OF USING, MODIFYING OR

17

http://www.opensource.org/licenses/pythonpl.php

mxURL - Flexible URL Data-Type for Python

DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE
ABOVE EXCLUSION OR LIMITATION MAY NOT APPLY TO LICENSEE.

5. Termination

This License Agreement will automatically terminate upon a material breach
of its terms and conditions.

6. Third Party Rights

Any software or documentation in source or binary form provided along
with the Software that is associated with a separate license agreement is
licensed to Licensee under the terms of that license agreement. This License
Agreement does not apply to those portions of the Software. Copies of the
third party licenses are included in the Software Distribution.

7. General

Nothing in this License Agreement affects any statutory rights of consumers
that cannot be waived or limited by contract.

Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between eGenix.com
and Licensee.

If any provision of this License Agreement shall be unlawful, void, or for any
reason unenforceable, such provision shall be modified to the extent
necessary to render it enforceable without losing its intent, or, if no such
modification is possible, be severed from this License Agreement and shall
not affect the validity and enforceability of the remaining provisions of this
License Agreement.

This License Agreement shall be governed by and interpreted in all respects
by the law of Germany, excluding conflict of law provisions. It shall not be
governed by the United Nations Convention on Contracts for International
Sale of Goods.

This License Agreement does not grant permission to use eGenix.com
trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party.

18

8. Copyright & License

19

The controlling language of this License Agreement is English. If Licensee
has received a translation into another language, it has been provided for
Licensee's convenience only.

8. Agreement

By downloading, copying, installing or otherwise using the Software,
Licensee agrees to be bound by the terms and conditions of this License
Agreement.

For question regarding this License Agreement, please write to:

eGenix.com Software, Skills and Services GmbH

Pastor-Loeh-Str. 48

D-40764 Langenfeld

Germany

	Introduction
	mx.URL.URL Object
	URL Parts
	Predefined URL schemes
	Joining URLs
	Using URL objects with strings
	mx.URL.URL Object Constructors
	mx.URL.URL Object Instance Variables
	mx.URL.URL Object Instance Methods

	mx.URL Functions
	mx.URL Constants
	Examples of Use
	Package Structure
	Support
	Copyright & License

