
Date/Time Library
for Python

VVVersion 3.2 eerrssiioonn 33..22

mmxxDDaatteeTTiimmee

Copyright  1997-2000 by IKDS Marc-André Lemburg, Langenfeld
Copyright  2000-2013 by eGenix.com GmbH, Langenfeld

All rights reserved. No part of this work may be reproduced or used in a any form or
by any means without written permission of the publisher.

All product names and logos are trademarks of their respective owners.

The product names "mxBeeBase", "mxCGIPython", "mxCounter", "mxCrypto",
"mxDateTime", "mxHTMLTools", "mxIP", "mxLicenseManager", "mxLog", "mxNumber",
"mxODBC", "mxODBC Connect", "mxODBC Zope DA", "mxObjectStore", "mxProxy",
"mxQueue", "mxStack", "mxTextTools", "mxTidy", "mxTools", "mxUID", "mxURL",
"mxXMLTools", "eGenix Application Server", "PythonHTML", "eGenix" and
"eGenix.com" and corresponding logos are trademarks or registered trademarks of
eGenix.com GmbH, Langenfeld

Printed in Germany.

Contents

Contents

1. Introduction .. 1

2. Design... 2
2.1 Time Zones, Daylight Savings Time (DST) and Leap Seconds 3
2.2 Calendars .. 3
2.3 Conversion from and to other formats... 4
2.4 Rounding Errors and Roundtrip-Safety ... 4
2.5 Immutability .. 4
2.6 UTC and GMT ... 5
2.7 Interaction with other Types.. 5
2.8 String formats.. 5
2.9 Speed and Memory ... 6
2.10 Background and Resource Information on the Web............................... 6

3. mx.DateTime.DateTime Object.. 7
3.1 DateTime Object Constructors .. 7
3.2 DateTime Object Methods .. 11
3.3 DateTime Object Attributes... 14

4. mx.DateTime.DateTimeDelta Object ..17
4.1 DateTimeDelta Object Constructors.. 17
4.2 DateTimeDelta Object Methods.. 18
4.3 DateTimeDelta Object Attributes... 19

5. mx.DateTime.RelativeDateTime Object...21
5.1 RelativeDateTime Constructors ... 21
5.2 RelativeDateTime Object Methods .. 23
5.3 RelativeDateTime Object Attributes... 23

mxDateTime - Date/Time Library for Python

5.4 RelativeDateTime Object Usage... 23

6. mx.DateTime Functions ... 26

7. mx.DateTime Constants... 27

8. Date/Time Arithmetic... 29
8.1 Notes:.. 33

9. mxDateTime Submodules.. 34
9.1 mx.DateTime.ISO Submodule.. 34

9.1.1 Constructors & Functions .. 34
Notes... 36

9.1.2 ISO 8601 string formats and DateTime[Delta] instances 36
9.2 mx.DateTime.ARPA Submodule ... 37

9.2.1 Constructors & Functions .. 37
Notes... 38

9.3 mx.DateTime.Feasts Submodule.. 38
9.3.1 Constructors & Functions .. 38

9.4 mx.DateTime.Parser Submodule.. 39
9.4.1 Constructors & Functions .. 40

9.5 mx.DateTime.NIST Submodule .. 42
9.5.1 Constructors & Functions .. 42
9.5.2 Constants .. 44
9.5.3 Examples ... 45

10. Examples of Use .. 46

11. mx.DateTime Python C-API.. 47
11.1 Example ... 47
11.2 C API Import .. 47
11.3 C API Definition ... 48

Binary Compatibility .. 51
Type Checking... 51

12. mxDateTime Package Structure.. 52

Contents

13. Support ..53

14. Copyright & License ...54

1. Introduction

1. Introduction

The mxDateTime package provides consistent way of transferring date and
time data between Python and databases.

Apart from handling dates before the Unix epoch (1.1.1970) they also
correctly work with dates beyond the Unix time limit (currently with Unix
time values being commonly encoded using 32bit integers, the limit is
reached in 2038) and thus is Year 2000 and Year 2038 safe.

The package provides three main data structures for working with date and
time values.

These are:

• DateTime for referring to absolute date/time values,

• DateTimeDelta for date/time spans and

• RelativeDateTime for representing variable date/time spans (these
are the TABs of date/time calculation)

All object, functions and constants are available via the package namespace
mx.DateTime.

1

mxDateTime - Date/Time Library for Python

2. Design

The primary absolute date/time type DateTime uses the following internal
format:

Absolute date

This is a C long defined as being the number of days in the Gregorian
calendar since the day before January 1 in the year 1 (0001-01-01), the
Gregorian Epoch, also known as the Epoch of the Common Era (CE),
thus the Gregorian date 0001-01-01 corresponds to absolute date 1.
Note that the Julian Epoch starts two days before the Gregorian one.

Absolute time

This is a C double defined as the number of seconds since midnight
(0:00:00.00) of the day expressed by the above value.

The Epoch used by the module is January 1st of the year 1 at midnight
(0:00:00.00) in the Gregorian calendar. This date corresponds to absolute
day 1 and absolute time 0. Dates before the Epoch are handled by
extrapolating the calendars using negative years as basis (the year 1 BCE
corresponds to the year 0, 2 BCE is represented as year -1 and so on).

For the purpose of storing absolute time differences, the package provides a
second type called DateTimeDelta. The internal representation for this type
is seconds and stored in a signed C double.

To handle relative time deltas a third object type is available:
RelativeDateTime. This object is currently implemented in Python and may
be used to store relative time deltas (see below for an exact description).
It's main purpose is providing an intuitive way to calculate e.g. the "first of
next month".

Designing the types wasn't as easy as expected, since many criteria had to
be taken into account. Here are some of them and their implementation:

2

2. Design

2.1 Time Zones, Daylight Savings Time (DST) and Leap
Seconds

Time zones are among the most difficult to handle issues when it comes to
implementing and using types for date and time. We chose to move the
time zone handling functionality out of the C implementation and into
Python. This means that the types know nothing about the time zones of
the values they store and calculations are done using the raw data.

If you need to store and use these informations in calculations, you can
"subclass" the types to implement your ideas rather than having to stick to
what the C implementation defines. The included ODMG submodule is an
example of how this can be done.

Leap seconds are not supported either. You can implement classes
respecting these by "subclassing" DateTime and DateTimeDelta and then
overriding the calculation methods with methods that work on Unix ticks
values (provided the underlying C lib knows about leap seconds -- most
don't and the POSIX standard even enforces not to use leap seconds).

2.2 Calendars

The module supports two calendars, the Gregorian (default and needed for
most conversions) and the Julian, which is handy for dates prior to the year
1582 when the calendar was revised by Pope Gregory XIII.

Construction of Julian dates can be done using either the
JulianDateTime() constructor or indirect through the .Julian() method
of DateTime instances. To check which calendar a DateTime instance uses,
query the calendar instance attribute.

Note that Julian dates output the Julian date through the instances date
attributes and broken down values. Not all conversions are available on
instances using the Julian calendar. Even though in the Julian calendar days
start at noon (12:00:00.0), mxDateTime will use the Gregorian convention
of using the date for the period from 00:00:00.0 to 23:59:59.99 of that day
(this may change in future versions of mxDateTime).

Both calendars use mathematical models as basis -- they do not account for
the many inaccuracies that occurred during their usage history. For this
reason, the .absdate values should be interpreted with care, esp. for dates
using the Julian calendar. As a result of the mathematical models, the

3

mxDateTime - Date/Time Library for Python

Epochs in the calendars differ by a few days. This was needed in order to
synchronize the calendars in the switching year 1582: JulianDate(1,1,1)
points to a date two days before Date(1,1,1).

2.3 Conversion from and to other formats

For the purpose of converting the stored values to Unix ticks (number of
seconds since the Unix epoch; the C lib also uses this representation) we
assume that the values are given in local time. This assumption had to be
made because the C lib provides no standard way to convert a broken
down date/time value in any other way into a ticks value.

Conversions to COM dates and tuples are done without any assumption on
the time zone. The raw values are used.

Conversion from other formats to DateTime instances is always done by
first calculating the corresponding absolute time and date values (which are
also used as basis for calculations).

2.4 Rounding Errors and Roundtrip-Safety

The internal representation of date/times behaves much like floats do in
Python, i.e. rounding errors can occur when doing calculations. There is a
special compare function included (cmp()) in the package that allows you
to compare two date/time values using a given accuracy, e.g. cmp(date1,
date2, 0.5) will allow 12:00:00.5 and 12:00:01.0 to compare equal.

Special care has been taken to prevent these rounding errors from
occurring for COM dates. If you create a DateTime instance using a COM
date, then the value returned by the .COMDate() method is guaranteed to
be exactly the same as the one used for creation. The same is true for
creation using absolute time and absolute date and broken down values.

2.5 Immutability

One other thing to keep in mind when working with DateTime and
DateTimeDelta instances is that they are immutable (like tuples). Once an

4

2. Design

instance is created you can not change its value. Instead, you will have to
create a new instance with modified values.

The advantage of having immutable objects is that they can be used as
dictionary keys.

2.6 UTC and GMT

UTC (a mix of: Temps Universel Coordonné and Coordinated Universal
Time) and GMT (Greenich Mean Time) are two names for more or less the
same thing: they both refer to the international universal time which is used
throughout the world to coordinate events in time regardless of time zone,
day light savings time or other local time alterations. See the Calendar FAQ
for more infos and the exact definitions of UTC and GMT.

The mx.DateTime package uses these two names interchangeably.
Sometimes API only refer to one name for simplicity. The name preference
(GMT or UTC) is often chosen according to common usage.

2.7 Interaction with other Types

DateTime and DateTimeDelta instances can be compared and hashed,
making them compatible to the dictionary implementation Python uses
(they can be used as keys). The copy protocol, simple arithmetic and
pickleing are also supported (see below for details).

2.8 String formats

DateTime and DateTimeDelta instances know how to output themselves as
ISO8601-strings. The format is very simple: YYYY-MM-DD HH:MM:SS.ss for
DateTime instances and [-][DD:]HH:MM:SS.ss for DateTimeDelta
instances (the DD-part (days) is only given if the absolute delta value is
greater than 24 hours). Customized conversion to strings can be done
using the strftime-methods or the included submodules.

5

http://www.tondering.dk/claus/calendar.html

mxDateTime - Date/Time Library for Python

String parsing is supported through the strptime() constructor which
implements a very strict parsing scheme and the included submodules (e.g.
ISO and ARPA), which allow a little more freedom.

2.9 Speed and Memory

Comparing the types to time-module based routines is not really possible,
since the used strategies differ. You can compare them to tuple-based
date/time classes though: DateTime[Delta] are much faster on creation, use
less storage and are faster to convert to the supported other formats than
any equivalent tuple-based implementation written in Python.

Creation of time-module values using time.mktime() is much slower than
doing the same thing with DateTime(). The same holds for the reverse
conversion (using time.localtime()).

The storage size of ticks (floats, which the time module uses) is about 1/3
of the size a DateTime instance uses. This is mainly due to the fact that
DateTime instances cache the broken down values for fast access.

To summarize: DateTime[Delta] are faster, but also use more memory than
traditional time-module based techniques.

2.10 Background and Resource Information on the Web

Here is a small list of links I used as starting points to find some of the
date/time related information included in this package:

• The Calendar FAQ by Claus Tondering.

• The Calendar Links by Rudy Limeback.

• The Ecclesiastical Calendar by Marcos J. Montes.

• The Systems of Time page provided by the Time Service Dept., U.S.
Naval Observatory, Washington, DC.

• The Calendar Conversion page by Scott E. Lee.

• For the interested reader, I also suggest A walk through time
presented by the NIST Time and Frequency Division.

6

http://www.tondering.dk/claus/calendar.html
http://www.interlog.com/~r937/callinks.html
http://www.smart.net/~mmontes/ec-cal.html
http://tycho.usno.navy.mil/systime.html
http://genealogy.org/~scottlee/calconvert.cgi
http://physics.nist.gov/time

3. mx.DateTime.DateTime Object

3. mx.DateTime.DateTime Object

DateTime objects encapsulate an absolute point in the date/time
continuum.

3.1 DateTime Object Constructors

Several constructors are available in the module DateTime. All of these
return DateTime instances using the Gregorian calendar except for
JulianDateTime() which returns instances using the Julian calendar.

DateTime(year,month=1,day=1,hour=0,minute=0,second=0.0)

Constructs a DateTime instance from the given values.

This is the standard constructor for DateTime instances.

Assumes that the date is given in the Gregorian calendar (which it the
one used in many countries today).

The entry for day can be negative to indicate days counted in reverse
order, that is the last day becomes -1, the day before that -2, and so on,
e.g. DateTime(1997,12,-2) gives the 30.12.1997 (this is useful
especially for months).

Note that although the above makes it look like this function can handle
keywords, it currently cannot.

The following constructors are provided to simplify integration with
existing code.

Date(year,month,day)

Is just another name binding for DateTime(). The time part is set to
00:00:00.0.

DateFrom(*args,**kws)

Constructs a DateTime instance from the arguments, but only uses the
date parts and drops the time information, if any.

This constructor can parse strings, handle numeric arguments, Python
datetime.date and datetime.datetime objects, and knows about
the keywords year,month,day.

7

mxDateTime - Date/Time Library for Python

It uses type inference to find out how to interpret the arguments and
makes use of the Parser module.

DateFromTicks(ticks)

Constructs a DateTime instance pointing to the local time date at
00:00:00.00 (midnight) indicated by the given ticks value. The time part
is ignored.

DateTimeFrom(*args,**kws)

Constructs a DateTime instance from the arguments.

This constructor can parse strings, handle numeric arguments, Python
datetime.date and datetime.datetime objects, and knows about
the keywords year,month,day,hour,minute,second.

It uses type inference to find out how to interpret the arguments and
makes use of the Parser module.

DateTimeFromAbsDateTime(absdate, abstime, calendar=Greogorian)

Returns a new DateTime instance for the given absolute date and time.

calendar may be given to create a DateTime instance for a specific
calendar. It defaults to the Gregorian calendar.

This interface can be used by classes written in Python which
implement other calendars than the Gregorian, for example.

DateTimeFromAbsDays(days)

Constructs a DateTime instance from the days since the (Christian)
Epoch value.

DateTimeFromCOMDate(comdate)

Constructs a DateTime instance from the COM date value.

This is used by the Windows COM interface and represents the
date/time difference between 30.12.1899 and the represented
date/time, with time being encoded as fraction of a whole day, thus 0.5
corresponds to 12:00:00.00.

Special care is taken that the resulting instance's method .COMDate()
returns exactly the same value as the one used for constructing it -- even
though the internal representation is more accurate.

DateTimeFromMJD(mjd)

Constructs a DateTime instance from the given Modified Julian Day
(MJD) value.

Since MJD values are given in UTC, the instance will represent UTC. See
the Calendar FAQ for details.

8

http://www.tondering.dk/claus/calendar.html

3. mx.DateTime.DateTime Object

Note: Usage of MJD notation is discouraged by the International
Astronomical Union (IAU). Use JDN instead.

DateTimeFromJDN(jdn)

Constructs a DateTime instance from the given Julian Day Number
(JDN).

Since JDN values are given in UTC, the instance will represent UTC. See
the Calendar FAQ for details.

DateTimeFromTicks(ticks)

Constructs a DateTime instance pointing to the local time indicated by
the given ticks value. Raises an Error in case the ticks value cannot be
converted to a date/time representation.

DateTimeFromTJD(tjd,tjd_myriad=current_myriad)

Constructs a DateTime instance from the given Truncated Julian Day
(TJD) value as used by NASA and the U.S. Naval Observatory, that is
TJD = (MJD - 40000) % 10000 or simply TJD = MJD % 10000. Some
sources define TJD = MJD - 40000 making it non-periodic; this is not
supported by this constructor.

tjd_myriad will default to the tjd_myriad current at package import time,
if not given. It refers to the truncated part of the TDJ number. The
current myriad (245) started on 1995-10-10 00:00:00.00 UTC and will
last until 2023-02-24 23:59:59.99 UTC.

Since TJD values are always given in UTC, the instance will represent
UTC.

Please note that usage of TJD is deprecated because of the information
loss involved with truncating data: use MJD or JDN instead.

JulianDate(year,month=1,day=1)

Is just another name binding for JulianDateTime(). The time part is set to
00:00:00.0.

JulianDateTime(year,month=1,day=1, hour=0,minute=0,second=0.0)

Constructs a DateTime instance from the given values assuming they
are given in the Julian calendar.

The instance will use the Julian calendar for all date related methods and
attributes.

Same comments as for DateTime().

GregorianDate(year,month,day)

Is just another name binding for DateTime(). The time part is set to
00:00:00.0.

9

http://www.tondering.dk/claus/calendar.html

mxDateTime - Date/Time Library for Python

GregorianDateTime(year,month=1,day=1,hour=0,minute=0,second=0.0)

Is just another name binding for DateTime().

Timestamp(year,month,day,hour=0,minute=0,second=0.0)

Is just another name binding for DateTime().

TimestampFrom(*args,**kws)

Alias for DateTimeFrom().

TimestampFromTicks(ticks)

Alias for DateTimeFromTicks().

gmt()

Returns a new DateTime instance reflecting the current GMT time.

gmtime(ticks=time.time())

Constructs a DateTime instance from the ticks value (this is what
time.time() returns; see the time module for details).

The instance will hold the associated UTC time. If ticks is not given, the
current time is used. gmticks() is the inverse of this function.

mktime(tuple)

Same as the DateTime() constructor accept that the interface used is
compatible to the similar time.mktime() API.

tuple has to be a 9-tuple
(year,month,day,hour,minute,second,dow,doy,dst).

Note that the tuple elements dow,doy and dst are not used in any way.

You should only use this constructor for porting applications from time
module based functions to DateTime.

now()

Returns a new DateTime instance reflecting the current local time.

mxDateTime tries to use the most accurate clock available on the
system. On recent Unix systems this is usually a nanosecond resolution
clock, but the actual measured resolution will usually be within a
microsecond. On Windows, the resolution is around one millisecond.

localtime(ticks)

Constructs a DateTime instance from the ticks value (this is what
time.time() returns; see the time module for details).

The instance will hold the associated local time.

10

3. mx.DateTime.DateTime Object

strptime(string,format_string[,default])

Parse the given string using the format string and construct a DateTime
instance from the found value.

If default is given (must be a DateTime instance), it's entries are used
as default values. Otherwise, 0001-01-01 00:00:00.00 is used. An
Error is raised if the underlying C parsing function strptime() fails.

Portability note: default does not work on Solaris. You will have to
reassemble the correct DateTime instance yourself (knowing which
parts the strptime() function parsed) if you intend to use default
values. Solaris sets the defaults to 1900-01-01 00:00:00.00 and then
overwrites them with the parsed values.

Note: Since this C API is relatively new, you may not have access to this
constructor on your platform. For further information on the format,
please refer to the Unix man-page (it is very similar to that of
strftime() which is documented in the Python library reference for
the time module).

today(hour=0,minute=0,second=0.0)

Returns a DateTime instance for the current date (in local time) at the
given time (defaults to midnight). E.g. today(14,00) is today at 1400
hours.

utc()

Alias for gmt().

utctime(ticks=time.time())

Alias for gmtime().

3.2 DateTime Object Methods

A DateTime instance has the following methods. Note that the calendar
setting of the instance effects all methods relying on date values.

.COMDate()

Returns a float float representing the instances value as COM date (see
above).

.Format(format_string="%c")

This is just an alias for .strftime() to make the type compatible to
other date/time types.

11

mxDateTime - Date/Time Library for Python

.Julian()

Returns a DateTime instance pointing to the same point in time but
using the Julian calendar.

.Gregorian()

Returns a DateTime instance pointing to the same point in time but
using the Gregorian calendar.

.absvalues()

Returns the instances value as tuple (absdate, abstime).

.gmticks(offset=0.0)

Returns a float representing the instances value in ticks (see above).

The conversion routine assumes that the stored date/time value is given
in UTC time. offset is subtracted from the resulting value.

The method raises an RangeError exception if the objects value does
not fit into the system's ticks range.

.gmtime()

Assuming that the instance refers to local time, this method returns new
DateTime instance holding the corresponding UTC value.

.gmtoffset()

Returns a DateTimeDelta instance representing the UTC offset for the
instance assuming that the stored values refer to local time. This is also
sometimes called timezone.

The UTC offset is defined as: local time - UTC time, e.g. it is negative in
the US and positive in eastern Europe and Asia.

Please note that this method does not work reliably during DST
switching time. This is mainly caused by the fact that when e.g.
switching from DST to non-DST time, the local time repeats a whole
hour, so there's no valid mapping of local time to UTC during this
transition hour.

.localtime()

Assuming that the instance refers to UTC time, this method returns new
DateTime instance holding the corresponding local time value.

.pydate()

Returns a Python datetime.date object with just the date values taken
from the DateTime object.

New in mxDateTime 3.2.

12

3. mx.DateTime.DateTime Object

.pydatetime()

Returns a Python datetime.datetime object with the same values as the
DateTime object.

New in mxDateTime 3.2.

.pytime()

Returns a Python datetime.time object with just the time values taken
from the DateTime object.

New in mxDateTime 3.2.

.strftime(format_string="%c")

Format the instances value as indicated by the format string.

This is the same function as the one in the time module. For further
information please refer to the C library documentation for strftime()
or the Python reference manual.

Note: strftime() and strptime() try to be the inverse of each other.
The output from strftime() given to strptime() together with the
format string passed to strftime() will in most cases give you a
DateTime instance referring to the same date and time.

Time zone information is not available. Use the instance variable .tz
instead.

.rebuild(year=None,month=None,day=None,hour=None,minute=None,second
=None)

Returns a new DateTime object copying the attributes of the current
object and replacing the attributes given as keyword arguments with
new values.

This is useful to e.g. convert a DateTime object into one which maps to
midnight on the same day, or one which has the .seconds attribute
rounded to milliseconds.

.ticks(offset=0.0,dst=-1)

Returns a float representing the instances value in ticks (see above).

The conversion routine assumes that the stored date/time value is given
in local time.

The given value for dst is used by the conversion (0 = DST off, 1 =
DST on, -1 = unkown) and offset is subtracted from the resulting
value.

The method raises a RangeError exception if the objects value does not
fit into the system's ticks range.

Note: On some platforms the C lib's mktime() function that this
method uses does not allow setting DST to an arbitrary value. The

13

mxDateTime - Date/Time Library for Python

module checks for this and raises a SystemError in case setting DST to
0 or 1 does not result in valid results.

.timetuple()

Alias for .tuple() needed for compatibility with Python’s datetime
module.

.tuple()

Returns the instances value as time.localtime() (all integers) tuple.

DST is set assuming local time. It can also be -1, meaning that the
information is not available.

.weekday()

Returns the day of the week as integer. This is an alternative interface for
the .day_of_week attribute and needed for compatibility with Python’s
datetime module.

3.3 DateTime Object Attributes

To make life easier, the instances also provide a more direct interface to
their stored values (these are all read-only). Note that the calendar setting
of the instance effects all attributes referring to date values.

.hour, .minute, .second

Return the indicated values in their standard ranges.

Note that in a future release, leap seconds may also be considered and
thus second has a range of 0-60.

.year, .month, .day

Return the indicated values in their standard 1-based ranges.

.date, .time

Returns the ISO representation of the date part as string. The format is
'[-]YYYY-MM-DD'.

.absdate

Returns the absolute date as used by the instance.

.absdays

Returns the absolute date and time of the object converted to a Python
float representing absolute days (days since the epoch).

14

3. mx.DateTime.DateTime Object

The value is calculated using a 86400.0 seconds/day basis and does not
account for leap seconds. This value is handy if you need the date/time
value stored in one number. By using a Python float, which is mapped
to a C double internally, the accuracy should give a fairly large range of
valid dates.

.abstime

Returns the absolute time as used by the instance.

.days_in_month

Returns the number of days in the object's month.

.day_of_week

Returns the day of the week. Monday is returned as 0.

.day_of_year

Returns the day of the year; 1.1. is returned as 1.

.dst

Integer indicating whether DST is active (1) or not (0) or cannot be
determined (-1).

The value is calculated assuming that the stored value is local time.

.calendar

Calendar used by the instance. This can either be the constant Julian
or Gregorian.

.is_leapyear

Returns 1 iff the instances value points to a leap year in the Gregorian
calendar.

.iso_week

Returns a tuple (year,isoweek,isoday) signifying the ISO week
notation for the date the object points to.

Note: isoday 1 is Monday !

.jdn

Returns a float representing the instance's value as Julian Day Number
(Julian Day Number 0 starts at 12:00 UTC on 1 January 4713 BC and
ends 24 hours later at noon on 2 January 4713 BC).

It is assumed for the calculation that the stored value is given in UTC.
Fractions indicate parts of the full day, e.g. JDN 2451170.17393 referrs
to Tue, 22 Dec 1998 16:10:27 UTC.

15

http://www.cl.cam.ac.uk/~mgk25/iso-time.html
http://www.cl.cam.ac.uk/~mgk25/iso-time.html

mxDateTime - Date/Time Library for Python

See the Calendar FAQ for details.

.mjd

Returns a float representing the instance's value in terms of Modified
Julian Days (1858-11-17 00:00:00.00 UTC being Modified Julian Day 0).

It is assumed for the calculation that the stored value is given in UTC.
Fractions indicate parts of the full day, e.g. 0.5 referrs to noon on the 17
November 1858.

See the Calendar FAQ or Systems of Time for details.

Note: Usage of MJD notation is discouraged by the International
Astronomical Union (IAU). Use JDN instead.

.time

Returns the ISO representation of the time part as string. The format is
'HH:MM:SS.ss' with ss being the truncated fraction of the seconds
value.

.tjd

Returns a float representing the instance's value in terms of Truncated
Julian Days (TJD).

TJDs are calculated using 00:00 UTC on 1 January 4713 BC as epoch,
counting the number of days as for the Julian Day Numbers and then
omitting the myriad part (div 10000) from it. As a result the TJD will
always have at most 4 digits. The divisor is available through the
tjd_myriad attribute.

It is assumed for the calculation that the stored value is given in UTC.
Fractions indicate parts of the full day.

Some people claim that this term is also known under the name Star
Date. Remember ? ... "Captain's Log, Star Date 8143.65". I
wonder which myriad these dates refer to.

.tjd_myriad

Returns the truncated part of the TJD representation.

.tz

Returns the time zone string, assuming local time, or '???' if the
information is not available.

.yearoffset

Returns the absolute date of the 31.12. in the year before the instance's
year.

16

http://www.tondering.dk/claus/calendar.html
http://www.tondering.dk/claus/calendar.html
http://tycho.usno.navy.mil/systime.html

4. mx.DateTime.DateTimeDelta Object

4. mx.DateTime.DateTimeDelta Object

DateTimeDelta objects provide a way to define an absolute time-span.

Time of day, as we commonly refer it, usually refers to a fixed fraction of a
day, measured from the start of the day (typically midnight). DateTimeDelta
objects abstract this notion to arbitrary time differences between two
absolute points in the date/time continuum.

4.1 DateTimeDelta Object Constructors

Several constructors are available:

DateTimeDelta(days[,hours=0.0,minutes=0.0,seconds=0.0])

Returns a new DateTimeDelta instance for the given time delta.

This is the standard constructor for DateTimeDelta instances.

The internal value is calculated using the formula days*86400.0 +
hours*3600.0 + minutes*60.0 + seconds. Keep this in mind when
passing negative values to the constructor.

The following constructors are provided to simplify integration with
existing code.

DateTimeDeltaFrom(*args,**kws)

Constructs a DateTimeDelta instance from the arguments.

This constructor can parser strings, handle numeric arguments, Python
datetime.time and datetime.timedelta objects, and knows about
the keywords year,month,day,hour,minute,second.

It uses type inference to find out how to interpret the arguments and
makes use of the Parser module.

DateTimeDeltaFromDays(days)

Constructs a DateTimeDelta instance from the given days value. It can
be given as float.

The internal value is calculated using a 86400.0 seconds/day basis.

17

mxDateTime - Date/Time Library for Python

DateTimeDeltaFromSeconds(seconds)

Constructs a DateTimeDelta instance from the given seconds value. It
can be given as float.

Time(hour,minute=0.0,second=0.0)

Is just another name binding for TimeDelta().

TimeDelta(hour=0.0,minute=0.0,second=0.0)

Constructs a DateTimeDelta instance from the given values.

The internal value is calculated using the formula hours * 3600 +
minutes * 60 + seconds. Keep this in mind when passing negative
values to the constructor.

The constructor allows usage of keywords, e.g. Time(seconds=1.5)
works.

TimeDeltaFrom(*args,**kws)

Constructs a DateTimeDelta instance from the arguments.

The interface is the same as for DateTimeDeltaFrom() with the
exception that numeric arguments are interpreted without day part as
for the TimeDelta() constructor.

TimeFrom(*args,**kws)

Alias for TimeDeltaFrom().

TimeFromTicks(ticks)

Constructs a DateTimeDelta instance pointing to the local time
indicated by the given ticks value. The date part is ignored.

4.2 DateTimeDelta Object Methods

A DateTimeDelta instance has the following methods:

.absvalues()

Returns a (absdays, absseconds) tuple.

The absseconds part is normalized in such way that it is always smaller
than 86400.0. Both values are signed.

.pytime()

Returns a Python datetime.time object with the same values as the
DateTimeDelta object.

18

4. mx.DateTime.DateTimeDelta Object

Raises a ValueError in case the DateTimeDelta object has a non-zero
.day set.

New in mxDateTime 3.2.

.pytimedelta()

Returns a Python datetime.timedelta object with the same values as the
DateTimeDelta object.

New in mxDateTime 3.2.

.rebuild(day=None,hour=None,minute=None,second=None)

Returns a new DateTimeDelta object copying the attributes of the
current object and replacing the attributes given as keyword arguments
with new values.

This is useful to e.g. convert a DateTimeDelta object into one which has
the .seconds attribute rounded to milliseconds.

.strftime(format_string)

Format the instance's value as indicated by the format string.

This is the same function as the one in the time module. For further
information please refer to the Python reference manual.

Since some descriptors don't make any sense for date/time deltas these
return undefined values. Only the fields hour, minute, seconds and day
are set according to the objects value (the descriptors %d %H %M %S %I
%p %X work as expected).

Negative values show up positive -- you'll have to provide your own way
of showing the sign (the seconds instance variable is signed).

.tuple()

Returns the instance's value as (day,hour,minute,second) (all
integers) tuple.

The values are the same those returned by the attributes of the same
name.

4.3 DateTimeDelta Object Attributes

To make life easier, the instances also provide a more direct interface to
their stored values (these are all read-only):

19

mxDateTime - Date/Time Library for Python

.day, .hour, .minute, .second

Return the indicated values in their standard ranges. The values are
negative for negative time deltas.

.days, .hours, .minutes, .seconds

Return the internal value of the object expressed as float in the resp.
units, e.g. TimeDelta(12,00,00).days == 0.5.

20

5. mx.DateTime.RelativeDateTime Object

5. mx.DateTime.RelativeDateTime Object

RelativeDateTime objects provide a way to abstract date/time differences
using date/time characteristics.

They are a mix of both absolute and relative date/time settings which makes
it very easy to define more complicated date/time relationships between
two absolute points in the date/time continuum.

RelativeDateTime objects are typically used to define recurrences of events,
age or schedules bound to a certain day of the week, week or day of a
month.

5.1 RelativeDateTime Constructors

These constructors are available:

RelativeDateTime(years=0,months=0,days=0, year=0,month=0,day=0,
hours=0,minutes=0,seconds=0, hour=None,minute=None,second=None,
weekday=None,weeks=0)

Returns a RelativeDateTime instance for the specified relative time.

This is the standard constructor for RelativeDateTime instances.

The constructor handles keywords, so you'll only have to give those
parameters which should be changed when you add the relative to an
absolute DateTime instance.

Do not pass arguments directly, always use the keyword notation !

Absolute values passed to the constructor will override delta values of
the same type. Note that weeks is added to days so that the instances
days values will be days + 7*weeks.

weekday must be a 2-tuple if given: (day_of_week, nth). The value is
applied after all other calculations have been done resulting in moving
the date to the nth weekday in the month that the date points to.
Negative values for nth result in the ordering of the month's weekdays
to be reversed, e.g. (Monday,-1) will move to the last Monday in that
month. Setting nth to 0 results in the date's week to be used as
reference, e.g (Tuesday,0) will move to Tuesday that week (which could
lie in a different month). weekday is considered an absolute value, so
multiplication or negation will not touch it.

21

mxDateTime - Date/Time Library for Python

The following constructors are provided to simplify integration with
existing code.

Age(date1,date2)

Is another name binding for RelativeDateTimeDiff().

RelativeDate(years=0,months=0,days=0, year=0,month=0,day=0,
weeks=0)

Is another name binding for RelativeDateTime. Do not pass arguments
directly, always use the keyword notation !

RelativeDateDiff(date1,date2)

Is another name binding for RelativeDateTimeDiff().

RelativeDateFrom(*args,**kws)

Is another name binding for RelativeDateTime().

Note that in future versions this constructor may explicitly ignore the
time parts.

RelativeDateTimeDiff(date1,date2)

Returns a RelativeDateTime instance representing the difference
between date1 and date2 in relative terms. The following should hold:
date2 + RelativeDateDiff(date1,date2) == date1 for all dates
date1 and date2.

Note that due to the algorithm used by this function, not the whole
range of DateTime instances is supported; there could also be a loss of
precision

This constructor is still experimental.

RelativeDateTimeFrom(*args,**kws)

Constructs a RelativeDateTime instance from the arguments.

This constructor can parse strings, handle numeric arguments and
knows about the same keywords as the RelativeDateTime()
constructor.

It uses type inference to find out how to interpret the arguments and
makes use of the Parser module.

RelativeTimeFrom(*args,**kws)

Is another name binding for RelativeDateTime().

Note that in future versions this constructor may explicitly ignore the
date parts.

22

5. mx.DateTime.RelativeDateTime Object

5.2 RelativeDateTime Object Methods

RelativeDateTime instances currently don't have any instance methods.

5.3 RelativeDateTime Object Attributes

The following attributes are exposed, but should not be written to directly
(the objects are currently implemented in Python, but that could change in
future releases).

.year, .month, .day, .hour, .minute, .second, .weekday

Absolute values of the instance.

.years, .months, .days, .hours, .minutes, .seconds

Relative values of the instance.

The given values are only defined in case they were set at instance
creation time.

5.4 RelativeDateTime Object Usage

RelativeDateTime objects store the given settings (plural nouns meaning
deltas, singular nouns absolute values) and apply them when used in
calculations. Delta values will have the effect of changing the corresponding
attribute of the involved absolute DateTime object accordingly, while
absolute values overwrite the DateTime objects attribute value with a new
one. The effective value of the object is thus determined at calculation time
and depends on the context it is used in.

Adding and subtracting RelativeDateTime instances is supported with the
following rules: deltas will be added together and right side absolute values
override left side ones.

Multiplying RelativeDateTime instances with numbers will yield instances
with scaled deltas (absolute values are not effected).

Adding RelativeDateTime instances to and subtracting RelativeDateTime
instances from DateTime instances will return DateTime instances with the
appropriate calculations applied, e.g. to get a DateTime instance for the first

23

mxDateTime - Date/Time Library for Python

of next month, you'd call now() + RelativeDateTime(months=+1,
day=01).

Note that dates like Date(1999,1,30) +
RelativeDateTime(months=+1) are not supported. The package currently
interprets these constructions as Date(1999,2,1) + 30, thus giving the
1999-03-02 which may not be what you'd expect (this may be changed in a
future version of mxDateTime to raise an exception).

When providing both delta and absolute values for an entity the absolute
value is set first and then the delta applied to the outcome.

In tests, RelativeDateTime instances are false in case they do not define any
date or time alterations and true otherwise.

RelativeDateTime instances are hashable and can also be compared for
equality. Other comparisons are currently not possible.

A few examples will probably make the intended usage clearer:

>>> from mx.DateTime import *

>>> print now()
1998-08-11 16:46:02.20

add one month
>>> print now() + RelativeDateTime(months=+1)
1998-09-11 16:46:24.59

add ten months
>>> print now() + RelativeDateTime(months=+10)
1999-06-11 16:47:03.07

ten days from now
>>> print now() + RelativeDateTime(days=+10)
1998-08-21 16:47:10.58

first of next month
>>> print now() + RelativeDateTime(months=+1,day=1)
1998-09-01 16:47:25.15

first of this month, same time
>>> print now() + RelativeDateTime(day=1)
1998-08-01 16:47:35.48

first of this month at midnight
>>> print now() + RelativeDateTime(day=1,hour=0,minute=0,second=0)
1998-08-01 00:00:00.00

next year, first of previous month, same time
>>> print now() + RelativeDateTime(years=+1,months=-1,day=1)
1999-07-01 16:48:31.87

Last Sunday in October 1998
>>> print Date(1998) + RelativeDateTime(weekday=(Sunday,-
1),month=10)
1998-10-25 00:00:00.00

24

5. mx.DateTime.RelativeDateTime Object

The result in ARPA notation:
>>> print ARPA.str(Date(1998) + RelativeDateTime(weekday=(Sunday,-
1),month=10))
Sun, 25 Oct 1998 00:00:00 +0200

Generic way of specifying "next tuesday":
>>> NextTuesday = RelativeDateTime(days=+6,weekday=(Tuesday,0))

25

mxDateTime - Date/Time Library for Python

6. mx.DateTime Functions

The package defines these additional functions:

cmp(obj1,obj2,accuracy=0.0)

Compares two DateTime[Delta] objects.

If accuracy is given, then equality will result in case the absolute
difference between the two values is less than or equal to accuracy.

local2gm(datetime)

Convert a DateTime instance holding local time to a DateTime instance
using UTC time.

local2utc(datetime)

Alias for local2gm().

gmticks(datetime)

Returns a ticks value for datetime assuming the stored value is given in
UTC.

DEPRECATED: Use the .gmticks() method instead.

gm2local(datetime)

Convert a DateTime instance holding UTC time to a DateTime instance
using local time.

tz_offset(datetime)

Returns a DateTimeDelta instance representing the UTC offset for
datetime assuming that the stored values refer to local time. If you
subtract this value from datetime, you'll get UTC time.

DEPRECATED: Use the .gmtoffset() method instead.

utcticks(datetime)

Alias for gmticks().

DEPRECATED: Use the .gmticks() method instead.

utc2local(datetime)

Alias for gm2local().

26

7. mx.DateTime Constants

7. mx.DateTime Constants

The package defines these constants:

DateTimeType, DateTimeDeltaType

The type objects for the two types.

Epoch

A DateTime instance pointing to the Christian Epoch, i.e. 0001-01-01
00:00:00.00.

Error, RangeError

These are the exception objects. Exceptions will normally only be raised
by functions, methods or arithmetic operations. RangeError is a
subclass of Error. Error is subclass of Python's standard ValueError.

Gregorian, Julian

The objects returned by calendar attribute of DateTime objects.
Currently these are the strings 'Gregorian' and 'Julian', but this might
change in future versions: always use these objects for checking the
calendar type.

January, February, March, April, May, June, July, August,
September, October, November, December

Months encoded as integers. January maps to 1, February to 2 and so
on.

MaxDateTime, MinDateTime, MaxDateTimeDelta, MinDateTimeDelta

These constants define the accepted ranges for the basic types. The
values depend on the ranges of C longs on your platform.

Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday

Weekdays encoded as integers. Monday maps to 0, Tuesday to 1 and so
on.

Month

Mapping that maps months to integers and integers to months. January
maps to 1, February to 2 and so on.

POSIX

Constant stating the POSIX compatibility of the system with respect to
Unix ticks.

27

mxDateTime - Date/Time Library for Python

If the system's time package uses POSIX time_t values (without
counting leap seconds), it is set to 1. In case the system's ticks values
include leap seconds and thus correctly represent the term "seconds
since the epoch", the constant is set to 0.

Weekday

Mapping that maps weekdays to integers and integers to weekdays.
Monday maps to 0, Tuesday to 1 and so on.

mxDateTimeAPI

The C API wrapped by a C object. See mxDateTime.h for details.

now_resolution

If available, this attribute is a floating point number stating the resolution
of the clock used by now() in seconds as reported by the system. The
actual resolution may be lower than reported by this attribute. It is not
available, if the time module emulation has to be used by mxDateTime
in order to determine the current time.

oneWeek, oneDay, oneHour, oneMinute, oneSecond

Are set to the indicated values wrapped into DateTimeDelta instances.

28

8. Date/Time Arithmetic

8. Date/Time Arithmetic

The three objects DateTime, DateTimeDelta and RelativeDateTime can be
used to do simple date/time arithmetic. Addition and subtraction are
supported and result in the expected results. In addition to handling
arithmetic using only the two types, mixed arithmetic with numbers is also
understood to a certain extent.

Note that the datetime module mentioned here was added to Python in
version 2.3. It is not available in earlier versions.

Argument 1 Argument 2 Result

DateTime object v DateTime object w v - w

returns a DateTimeDelta
object representing the time
difference.

v + w

is not defined and raises a
TypeError.

v cmp w

compares the two values.

DateTime object v A number w v - w

returns a new DateTime
object with a date/time
decremented by w days
(floats can be used to
indicate day fractions).

v + w

adds w days to the
DateTime object v and
returns a new DateTime
object.

w + v

works in the same way.

29

mxDateTime - Date/Time Library for Python

Argument 1 Argument 2 Result

Note: you can use the object
oneDay to get similar
effects in a more intuitive
way.

w - v

is not defined and returns a
TypeError.

v cmp w

Converts v to Unix ticks and
returns the result of
comparing the ticks value to
the number w. Note: the
ticks conversion assumes
that the stored value is given
in local time.

DateTime object v DateTimeDelta object w v - w

returns a new DateTime
object with a date/time
decremented by w's value.

v + w and w + v

return a new DateTime
object with a date/time
incremented by w's value.

w - v

is not defined and raises a
TypeError.

DateTime object v RelativeDateTime object w v + w

returns a new DateTime
object with a date/time
adjusted according to w's
settings;

v - w

works accordingly.

DateTime object v datetime.delta object w v - w

30

8. Date/Time Arithmetic

Argument 1 Argument 2 Result

returns a new DateTime
object with a date/time
adjusted according to w's
settings;

v + w

works accordingly.

DateTime object v datetime.date or
datetime.datetime object w

v - w

returns a DateTimeDelta
object representing the time
difference; datetime.date
values are interpreted as
referring to midnight that
day;

v + w

is not defined.

RelativeDateTime object v A number w v * w

returns a new
RelativeDateTime object
with all deltas multiplied by
float(w) (w * v works
in the same way);

v / w

returns a new
RelativeDateTime object
with all deltas divided by
float(w);

DateTimeDelta object v A number w v - w

returns a new
DateTimeDelta object with a
time delta value
decremented by w seconds
(can be given as float to
indicate fractions of a
second);

v + w

works accordingly;
Note: you can use the object

31

mxDateTime - Date/Time Library for Python

Argument 1 Argument 2 Result

oneSecond to get similar
effects in a more intuitive
way;

v * w

returns a new
DateTimeDelta object with a
time delta value multiplied
by float(w) (w * v
works in the same way);

v / w

returns a new
DateTimeDelta object with a
time delta value divided by
float(w);

v cmp w

Converts v to a signed float
representing the delta in
seconds and returns the
result of comparing the
seconds value to the number
w.

DateTimeDelta object v DateTimeDelta object w v + w

returns a new
DateTimeDelta object for
the sum of the two time
deltas ((v+w).seconds
== v.seconds +
w.seconds);

v - w

works accordingly;

v / w

returns a float equal to
v.seconds /
w.seconds.

DateTimeDelta object v

datetime.timedelta or
datetime.time w

v + w

returns a new
DateTimeDelta object for
the sum of the two time

32

8. Date/Time Arithmetic

Argument 1 Argument 2 Result

deltas: (v+w).seconds
== v.seconds +
w.seconds (for
datetime.time objects, the
number of seconds since
00:00:00 is used);

v - w

works accordingly;

v op w

work based on the seconds
deltas (for datetime.time
objects, the number of
seconds since 00:00:00 is
used).

8.1 Notes:

• Operation and argument order are often important because of the
different ways operations are implemented. Use parenthesis to
make your intent clear or you will get unwanted results.

• In mixed type operations, the mxDateTime implementation will
generally try to return mxDateTime objects.

• Some mixed type combinations don't work as expected due to
flaws in the Python datetime module implementation, e.g.
datetime.timedelta < DateTimeDelta doesn't work due to the
timedelta object raising an exception instead of returning
NotImplemented, allowing the DateTimeDelta to handle the
operation.

• Comparing RelativeDateTime instances does not work.

• Operations on DateTime instances cause the result to inherit the
calendar of the left operand.

33

mxDateTime - Date/Time Library for Python

9. mxDateTime Submodules

The package provides additional features in form of the following
submodules. All submodules are imported on request only.

The submodules are all available via the package namespace mx.DateTime,
e.g. as mx.DateTime.ISO.

9.1 mx.DateTime.ISO Submodule

The ISO submodule is intended to provide interfacing functions to ISO
8601 date and time representations (the ISO document is also available as
PDF file). The most common format is:

YYYY-MM-DD HH:MM:SS[+-HH:MM]

Note: timezone information (+-HH:MM) is only interpreted by the
ParseDateTimeUTC() constructor. All others ignore the given offset and
store the time value as-is.

You can access the functions and symbols defined in the submodule
through DateTime.ISO -- it is imported on demand.

9.1.1 Constructors & Functions

The module defines these constructors and functions:

DateTime(), Time(), TimeDelta()

Aliases for the constructors you find in DateTime. Just included for
completeness, since these also use ISO style notation for their argument
order.

ParseAny(isostring)

Returns a DateTime[Delta] instance reflecting the given ISO date and/or
time. All ISO formats supported by the module are understood by this
constructor.

34

http://www.cl.cam.ac.uk/~mgk25/iso-time.html
http://www.cl.cam.ac.uk/~mgk25/iso-time.html
http://www.iso.ch/markete/8601.pdf

9. mxDateTime Submodules

ParseDate(isostring)

Returns a DateTime instance reflecting the given ISO date. Year must be
given, month and day default to 1. A time part may not be included.

ParseDateTime(isostring)

Returns a DateTime instance reflecting the given ISO date.

A time part is optional and must be delimited from the date by a space
or 'T'. Year must be given, month and day default to 1. For the time part,
hour and minute must be given, while second defaults to 0.

Time zone information is parsed, but not evaluated.

ParseDateTimeGMT(isostring)

Same as ParseDateTime() except that timezone information is used to
calculate and return the date/time value in UTC.

Note: UTC is practically the same as GMT, the old time standard.

ParseDateTimeUTC(isostring)

Alias for ParseDateTimeGMT().

Note: UTC is practically the same as GMT, the old time standard.

ParseTime(isostring)

Returns a DateTimeDelta instance reflecting the given ISO time. Hours
and minutes must be given, seconds are optional and default to 0.
Fractions of a second may also be used, e.g. '12:23:12.34'.

ParseTimeDelta(isostring)

Returns a DateTimeDelta instance reflecting the given ISO time as delta.
Hours and minutes must be given, seconds are optional and default to
0. Fractions of a second may also be used, e.g. '12:23:12.34'. In
addition to the ISO standard a sign may be prepended to the time, e.g.
'-12:34'.

ParseWeek(isostring)

Returns a DateTime instance reflecting the given ISO date. Year must be
given, week number and day are optional and default to 1. A time part
may not be included.

ParseWeekTime(isostring)

Returns a DateTime instance reflecting the given ISO date. Year must be
given, week number and day are optional and default to 1. A time part
may not be included.

Week(year,isoweek,isoday=1)

Alias for WeekTime().

35

mxDateTime - Date/Time Library for Python

WeekTime(year,isoweek=1,isoday=1,hour=0,minute=0,second=0.0)

Returns a DateTime instance pointing to the given ISO week and day.
isoday defaults to 1, which corresponds to Monday in the ISO
numbering. Note that the resulting date can in fact lie in the year before
the one given as parameter, e.g. Week(1998,1,1) points to the date
1997-12-29. The DateTime instance variable iso_week provides an
inverse to this function.

str(datetime)

Returns the datetime instance as standard ISO date string (omitting the
seconds fraction and always adding timezone information). The function
assumes that the stored value is given in local time and calculates the
correct timezone offset accordingly.

strGMT(datetime)

Returns the datetime instance as ISO date string assuming it is given in
UTC.

strUTC(datetime)

Alias for strGMT().

 Notes

The parsing routines strip surrounding whitespace from the strings, but are
strict in what they want to see. Additional characters are not allowed and
will cause a ValueError to be raised.

Timezone information may be included, but will not be interpreted unless
explicitly stated.

The parsing routines also understand the ISO 8601 date/time formats
without separating dashes and colons, e.g. '19980102T142020', and
mixtures of both notations.

9.1.2 ISO 8601 string formats and DateTime[Delta] instances

DateTime and DateTimeDelta instances use a slightly enhanced ISO format
for string representation:

DateTime instances are converted to 'YYYY-MM-DD HH:MM:SS.ss' where
the last ss indicate hundredths of a second (ISO doesn't define how to
display these).

DateTimeDelta instances use '[-][DD:]HH:MM:SS.ss' as format, where
DD: is only shown for deltas spanning more than one day (24 hours). The

36

http://www.cl.cam.ac.uk/~mgk25/iso-time.html

9. mxDateTime Submodules

ss part has the same meaning as for DateTime instances: hundredths of a
second. A minus is shown for negative deltas. ISO does not define relative
time deltas, but the time representation is allowed to be 'HH:MM:SS'.

9.2 mx.DateTime.ARPA Submodule

The ARPA submodule is intended to provide interfacing functions to ARPA
date representations. These are used throughout the Internet for passing
around mails, postings, etc. The format is very simple:

[Day,]DD Mon YYYY HH:MM[:SS] ZONE

where ZONE can be one of these: MDT, O, EDT, X, Y, CDT, UT, AST, GMT,
PST, Z, V, CST, ADT, I, W, T, U, R, S, P, Q, N, EST, L, M, MST, K, H, E, F, G,
D, PDT, B, C, UTC, A (the single letter ones being military time zones).

Use of explicit time zone names other than UTC and GMT is deprecated,
though. The better alternative is providing the offset from UTC being in
effect at the given local time: +-HHMM (this is the offset you have to subtract
from the given time in order to get UTC).

You can access the functions and symbols defined in the submodule
through DateTime.ARPA -- it is imported on demand.

9.2.1 Constructors & Functions

The module defines these constructors and functions:

ParseDate(arpastring)

Returns a DateTime instance reflecting the given ARPA date. Any time
part included in the string is silently ignored.

ParseDateTime(arpastring)

Returns a DateTime instance reflecting the given ARPA date assuming it
is local time (timezones are silently ignored).

ParseDateTimeGMT(arpastring)

Returns a DateTime instance reflecting the given ARPA date converting it
to UTC (timezones are honored).

37

http://www.alenafix.com/old-fbg/articles/mil-time.html

mxDateTime - Date/Time Library for Python

ParseDateTimeUTC(arpastring)

Alias for ParseDateTimeGMT(). Note: UTC is practically the same as
GMT, the old time standard.

str(datetime,tz=DateTime.tz_offset(datetime))

Returns the datetime instance as ARPA date string. tz can be given as
DateTimeDelta instance providing the time zone difference from
datetime's zone to UTC. It defaults to
mx.DateTime.tz_offset(datetime) which assumes local time.

strGMT(datetime)

Returns the datetime instance as ARPA date string assuming it is given in
GMT using the 'GMT' timezone indicator.

Note: Most Internet software expects to find 'GMT' and not 'UTC'.

strUTC(datetime)

Returns the datetime instance as ARPA date string assuming it is given in
UTC using the 'UTC' timezone indicator.

 Notes

The parsing routines strip surrounding whitespace from the strings.
Additional characters are allowed (because some mail apps add extra
information to the date header).

9.3 mx.DateTime.Feasts Submodule

The Feasts submodule is intended to provide easy-to-use constructors for
common moveable Christian feasts that can be deduced from the date of
Easter Sunday. The algorithm used to calculate Easter Sunday is based on
the one presented in the Calendar FAQ by Claus Tondering, which in return
is based on the algorithm of Oudin (1940) as quoted in "Explanatory
Supplement to the Astronomical Almanac", P. Kenneth Seidelmann, editor.

9.3.1 Constructors & Functions

The module defines these constructors and functions:

38

http://www.tondering.dk/claus/calendar.html

9. mxDateTime Submodules

EasterSunday(year), Ostersonntag(year), DimanchePaques(year)

Returns a DateTime instance pointing to Easter Sunday in the given year
at midnight.

The other feasts are deduced from this date and all use the same interface.
The module defines these sets of constructors the return the corresponding
DateTime instance for midnight of the implied day:

Ascension(year), Himmelfahrt(year)

AshWednesday(year), Aschermittwoch(year), MercrediCendres(year)

CarnivalMonday(year), Rosenmontag(year)

CorpusChristi(year), Fronleichnam(year), FeteDieu(year)

For further reading, have a look at the Ecclesiastical Calendar.

EasterMonday(year), Ostermontag(year), LundiPaques(year)

EasterFriday(year), GoodFriday(year), Karfreitag(year),
VendrediSaint(year)

MardiGras(year)

PalmSunday(year), Palmsonntag(year), DimancheRameaux(year)

Pentecost(year), WhitSunday(year), Pfingstsonntag(year),
DimanchePentecote(year)

TrinitySunday(year)

WhitMonday(year), Pfingstmontag(year), LundiPentecote(year)

9.4 mx.DateTime.Parser Submodule

The Parser submodule provides constructors for DateTime[Delta] values
taking a string as input. The module knows about quite a few different date
and time formats and will try very hard to come up with a reasonable
output given a valid input.

Date/time parsing is a very difficult field of endeavor and that's why the
exact definition of what the module can parse and what not is defined by
implementation rather than a rigorous set of formats.

Things the module will recognize are the outputs of ISO, ARPA and the
.strftime() method. Currently only English, German, French, Spanish

39

http://www.smart.net/~mmontes/ec-cal.html

mxDateTime - Date/Time Library for Python

and Portuguese month and day names are supported. Have a look at the
source code (Parser.py) for a full list of compatible date/time formats.

9.4.1 Constructors & Functions

The module defines these constructors and functions:

DateFromString(text[, formats, defaultdate])

Returns a DateTime instance reflecting the date given in text. A possibly
included time part is ignored; the time part is always set to 0:00:00.00.

formats and defaultdate work just like for DateTimeFromString().

DateTimeDeltaFromString(text)

Returns a DateTimeDelta instance reflecting the delta given in text.
Defaults to 0:00:00:00.00 for parts that are not included in the textual
representation or cannot be parsed.

DateTimeFromString(text[, formats, defaultdate, time_formats])

Returns a DateTime instance reflecting the date and time given in text.
In case a timezone is given, the returned instance will point to the
corresponding UTC time value. Otherwise, the value is set as given in
the string.

formats may be set to a tuple of strings specifying which of the
following parsers to use and in which order to try them. Default is to try
all of them in the order given below:

'euro' - the European date parser

'us' - the US date parser

'altus' - the alternative US date parser (with '-' instead of '/')

'iso' - the ISO date parser

'altiso' - the alternative ISO date parser (without '-')

'usiso' - US style ISO date parser (yyyy/mm/dd)

'lit' - the US literal date parser

'altlit' - the alternative US literal date parser

'eurlit' - the Eurpean literal date parser

'unknown' - if no date part is found, use defaultdate

defaultdate provides the defaults to use in case no date part is found.
Most other parsers default to the current year January 1 if some of these
date parts are missing.

40

9. mxDateTime Submodules

If 'unknown' is not given in formats and the date/time cannot be
parsed, a ValueError is raised.

time_formats may be set to a tuple of strings specifying which of the
following parsers to use for parsing the time part and in which order to
try them. Default is to try all of them in the order given below:

'standard' - standard time format with ':' delimiter

'iso' - ISO time format (superset of 'standard')

'unknown' - default to 00:00:00 in case the time format
cannot be parsed

Defaults to 00:00:00.00 for parts that are not included in the textual
representation.

TimeDeltaFromString(text)

Alias for DateTimeDeltaFromString().

TimeFromString(text, [formats])

Returns a DateTimeDelta instance reflecting the time given in text. A
possibly included date part is ignored.

formats may be set to a tuple of strings specifying which of the
following parsers to use and in which order to try them. Default is to try
all of them in the order given below:

'standard' - standard time format with ':' delimiter

'iso' - ISO time format (superset of 'standard')

'unknown' - default to 00:00:00 in case the time format
cannot be parsed

Defaults to 00:00:00.00 for parts that are not included in the textual
representation.

RelativeDateFromString(text)

Same as RelativeDateTimeFromString(text) except that only the
date part of text is taken into account.

RelativeDateTimeFromString(text)

Returns a RelativeDateTime instance reflecting the relative date and time
given in text.

Defaults to wildcards (None or 0) for parts or values which are not
included in the textual representation or cannot be parsed.

The format used in text must adhere to the following ISO-style syntax:

[YYYY-MM-DD] [HH:MM[:SS]]

with the usual meanings.

41

mxDateTime - Date/Time Library for Python

Values which should not be altered may be replaced with '*', '%', '?' or
any combination of letters, e.g. 'YYYY'. Relative settings must be
enclosed in parenthesis if given and should include a sign, e.g. '(+0001)'
for the year part. All other settings are interpreted as absolute values.

Date and time parts are both optional as a whole. Seconds in the time
part are optional too. Everything else (including the hyphens and colons)
is mandatory.

RelativeTimeFromString(text)

Same as RelativeDateTimeFromString(text) except that only the
time part of text is taken into account.

The parsing routines ignore surrounding whitespace. Additional
characters and symbols are ignored.

9.5 mx.DateTime.NIST Submodule

The NIST submodule is useful when you are connected to the Internet and
want access to the accurate world standard time, the NIST atomic clocks.

The module accesses a special service provided by NIST and other partner
organizations, which allows anyone with Internet access to query the
current UTC time. Of the three provided protocols, daytime, time and ntp,
we chose the daytime protocol because of its simplicity and robustness.

Since access through the Internet can be slow, the module also provides a
way to calibrate itself and then use the computer's clock without the need
to go across the Internet for every call to the current time constructors. The
defaults are set in such a way that calibration occurs without further
interaction on part of the programmer. See the code for details.

9.5.1 Constructors & Functions

The module defines these constructors and functions:

calibrate(iterations=20)

Calibrates the localtime() and gmtime() functions supplied in this
module (not the standard ones in DateTime !).

Uses the NIST time service as time base. The computer must have an
active internet connection to be able to do calibration using the NIST
servers.

42

http://www.bldrdoc.gov/timefreq/service/nts.htm

9. mxDateTime Submodules

iterations sets the number of rounds to be done.

Note: This function takes a few seconds to complete. For long running
processes you should recalibrate every now and then because the
system clock tends to drift (usually more than the hardware clock in the
computer).

disable_auto_calibration()

Turns auto calibration off.

enable_auto_calibration()

Currently an alias for reset_auto_calibration().

gmtime()

Alias for utctime().

localtime(nist_lookup=0)

Returns the current local time as DateTime instance.

Same notes as for utctime().

now()

Alias for localtime().

reset_auto_calibration()

Enables and resets the auto calibration for a new round.

This does not clear possibly available calibration information, so the two
time APIs will continue to revert to the calibrated clock in case no
connection to the NIST servers is possible.

Auto calibration is on per default when the module is imported.

set_calibration(calibration_offset)

Sets the calibration to be use by localtime() and utctime().

This also sets the global calibrated to 1 and disables auto calibration.

time_offset(iterations=10)

Returns the average offset of the computer's clock to the NIST time base
in seconds.

If you add the return value to the return value of time.time(), you will
have a pretty accurate time base to use in your applications.

Note that due to network latencies and the socket overhead, the
calculated offset will include a small hopefully constant error.

iterations sets the number of queries done to the NIST time base. The
average is taken over all queries.

43

mxDateTime - Date/Time Library for Python

utctime(nist_lookup=0)

Returns the current UTC time as DateTime instance.

Works must like the standard DateTime.now(), but tries to use the
NIST time servers as time reference -- not only the computer's built-in
clock.

Note that the constructor may take several seconds to return in case no
calibration was performed (see calibrate()). With calibration
information, the computer's clock is used as reference and the offset to
NIST time is compensated by the constructor.

In case the NIST service is not reachable, the constructor falls back to
using either the calibrated (preferred) or uncalibrated computer's clock.

Setting nist_lookup to false (default) will cause the constructor to
prefer the calibrated CPU time over the expensive Internet queries. If it
is true, then Internet lookups are always tried first before using the local
clock. A value of 2 will cause an Error (see below) to be raised in case
the NIST servers are not reachable.

The constructor will use the received NIST information for auto
calibration.

9.5.2 Constants

The package defines these constants:

Error

This exception is raised by the constructors in case no connection to the
NIST service was possible.

calibrated

True in the global calibration contains valid information.

calibrating

If true, the module will Try to auto-calibrate itself whenever the NIST
servers are reachable.

calibration

Current calibration offset (NIST - CPU time) in seconds.

44

9. mxDateTime Submodules

9.5.3 Examples

There's an example called AtomicClock.py in the Examples/ subdir which
demonstrates how easy it is to turn your PC into a fairly accurate time
piece.

For even better time accuracy, one would have to use NTP.

45

mxDateTime - Date/Time Library for Python

10. Examples of Use

For an example of how to use the two types to develop other date/time
classes (e.g. ones that support time zones or other calendars), see the
included ODMG module. It defines types similar to those of the ODMG
standard.

Here is a little countdown script:

#!/usr/local/bin/python –u

""" Y2000.py - The year 2000 countdown.
"""
from mx.DateTime import *
from time import sleep

while 1:
 d = Date(2000,1,1) - now()
 print 'Y2000... time left: %2i days %2i hours '
 '%2i minutes %2i seconds\r' % \
 (d.day,d.hour,d.minute,d.second),
 sleep(1)

This snippet demonstrates some of the possible string representations for
DateTime instances:

>>> from mx.DateTime import *

>>> ISO.str(now())
'1998-06-14 11:08:27+0200'

>>> ARPA.str(now())
'Sun, 14 Jun 1998 11:08:33 +0200'

>>> now().strftime()
'Sun Jun 14 11:08:51 1998'

>>> str(now())
'1998-06-14 11:09:17.82'

More examples are available in the Examples subdirectory of the package.

46

11. mx.DateTime Python C-API

11. mx.DateTime Python C-API

mxDateTime exposes a C-API that can easily be used from other Python
extensions. Please have look at the file mxDateTime.h for details.

11.1 Example

Interfacing is provided through a Python C object for ticks, struct tm,
COM doubles, Python tuples and direct input either by giving absolute
date/time or a broken down tuple. To access the module, do the following
(note the similarities with Python's way of accessing functions from a
module):

#include "mxDateTime.h"

...
 PyObject *v;

 /* Import the mxDateTime module */
 if (mxDateTime_ImportModuleAndAPI())
 goto onError;

 /* Access functions from the exported C API through
 mxDateTime */
 v = mxDateTime.DateTime_FromAbsDateAndTime(729376, 49272.0);
 if (!v)
 goto onError;

 /* Type checking */
 if (mxDateTime_Check(v))
 printf("Works.\n");

 Py_DECREF(v);
...

11.2 C API Import

Other Python modules can easily import the C API without having to link
directly to mxDateTime. If another Python extension wants to use the API, it
will have to #include "mxDateTime.h":

#include "mxDateTime.h"

47

mxDateTime - Date/Time Library for Python

This will define a global struct variable mxDateTime providing access to the
interface functions which is initialized by calling an import function:

 /* Import the mxDateTime module */
 if (mxDateTime_ImportModuleAndAPI())
 goto onError;

After successful import, the functions are then available via the struct:

 /* Access functions from the exported C API through
 mxDateTime */
 v = mxDateTime.DateTime_FromAbsDateAndTime(729376, 49272.0);
 if (!v)
 goto onError;

11.3 C API Definition

The following function entries are defined in the mxDateTime C API:

typedef struct {

PyTypeObject *DateTime_Type;

Type object for DateTime()

PyObject *(*DateTime_FromAbsDateAndTime)(long absdate, double
abstime);

Construct a new object from the given absolute date and time.

Returns NULL in case of an error.

PyObject *(*DateTime_FromTuple)(PyObject *v);

Construct new object from Python 6-tuple
(year,month,day,hour,minute,second).

Returns NULL in case of an error.

PyObject *(*DateTime_FromDateAndTime)(long year, int month, int
day, int hour, int minute, double second);

Construct new object from year,month,day,hour,minute,second

Returns NULL in case of an error.

PyObject *(*DateTime_FromTmStruct)(struct tm *tm);

Construct new object from a given struct tm. DST, weekday and day of
year are ignored.

Returns NULL in case of an error.

PyObject *(*DateTime_FromTicks)(double ticks);

Construct new object from the given ticks; these are first converted to a
gmtime struct and this is then used as basis for the object value.

48

11. mx.DateTime Python C-API

Note that you have to pass in the ticks value as double and not as time_t
value (see the note below on this).

Returns NULL in case of an error.

PyObject *(*DateTime_FromCOMDate)(double comdate);

Construct new object from a given COM date double. This is the
date/time standard used in the Microsoft COM interface.

Returns NULL in case of an error.

struct tm *(*DateTime_AsTmStruct)(mxDateTimeObject *datetime,
struct tm *tm);

Fill the given struct tm with the object's value.

Seconds are truncated before assigning them to the struct tm seconds
integer slot (previous version rounded the seconds part which
sometimes resulted in the value being 60).

Returns a pointer to the changed struct or NULL in case of an error.

double (*DateTime_AsTicks)(mxDateTimeObject *datetime);

Return the objects value as time_t value.

It is assumed that the object contains local time information, so
time.localtime(object.as_ticks()) == object.tuple().

Note that this functions returns a double and not a time_t value -- this is
because some systems define time_t to be a long which would cause
the conversion to lose the fraction part.

Returns -1.0 and sets an error in case of failure.

double (*DateTime_AsCOMDate)(mxDateTimeObject *datetime);

Return the objects value as COM date double

Returns -1.0 and sets an error in case of failure.

PyTypeObject *DateTimeDelta_Type;

Type object for DateTimeDelta()

PyObject *(*DateTimeDelta_FromDaysAndSeconds)(long days, double
seconds);

Construct a new object from the given days and seconds deltas.

The internal value is calculated using a 86400.0 seconds/day basis.

Returns NULL in case of an error.

PyObject *(*DateTimeDelta_FromTime)(int hours, int minutes, double
seconds);

49

mxDateTime - Date/Time Library for Python

Construct a new object from the given values repesenting time. The
parameters are used to calculate a number-of-seconds since midnight
value.

Returns NULL in case of an error.

PyObject *(*DateTimeDelta_FromTuple)(PyObject *v);

Same as DateTimeDelta_FromDaysAndSeconds() except that you pass
the two arguments in a Python tuple.

Returns NULL in case of an error.

PyObject *(*DateTimeDelta_FromTimeTuple)(PyObject *v);

Same as DateTimeDelta_FromTime() except that you pass the three
arguments in a Python tuple.

Returns NULL in case of an error.

double (*DateTimeDelta_AsDouble)(mxDateTimeDeltaObject *delta);

Using 86400.0 seconds/day a seconds value is calculated from the days
and seconds part of the passed object.

Returns -1.0 and sets an error in case of failure.

PyObject *(*DateTime_FromAbsDays)(double days);

Construct a new DateTime object from the given days value which
represents absolute days and the absolute time as fraction of a day.

The internal value is calculated using a 86400.0 seconds/day basis.

Returns NULL in case of an error.

double (*DateTime_AsAbsDays)(mxDateTimeObject *datetime);

Using 86400.0 seconds/day a days value is calculated from the internal
value of the passed object.

Returns -1.0 and sets an error in case of failure.

PyObject *(*DateTimeDelta_FromDays)(double days);

Construct a new DateTimeDelta object from the given days value.

The internal value is calculated using a 86400.0 seconds/day basis.

Returns NULL in case of an error.

double (*DateTimeDelta_AsDays)(mxDateTimeDeltaObject *delta);

Using 86400.0 seconds/day a days value is calculated from the internal
value of the passed object.

Returns NULL in case of an error.

50

11. mx.DateTime Python C-API

int (*DateTime_BrokenDown)(mxDateTimeObject *datetime, long *year,
int *month, int *day, int *hour, int *minute, double *second);

Sets the given variables to values corresponding to the given DateTime
object.

You can pass a NULL pointer if you don't want that variable to be set.

Returns -1 and sets an error in case of failure.

int (*DateTimeDelta_BrokenDown)(mxDateTimeDeltaObject *delta, long
*day, int *hour, int *minute, double *second);

Sets the given variables to values corresponding to the given
DateTimeDelta object.

You can pass a NULL pointer if you don't want that variable to be set.

Returns -1 and sets an error in case of failure.
PyObject *(*DateTime_FromAbsDateTime)(long absdate, double abstime,
int calendar);

Construct a new object from the given absolute date, time and calendar.

Returns NULL in case of an error.

New in mxDateTime 3.2.

} mxDateTimeModule_APIObject;

 Binary Compatibility

New APIs will generally be added to the end of the mxDateTime struct to
maintain binary compatibility between the releases.

 Type Checking

The mxDateTime.h header file also defines two type checking macros
which will work once the mxDateTime C API has been loaded:

mxDateTime_Check(v)

Returns 1 for DateTime objects, 0 otherwise.

mxDateTimeDelta_Check(v)

Returns 1 for DateTimeDelta objects, 0 otherwise.

51

mxDateTime - Date/Time Library for Python

12. mxDateTime Package Structure

[DateTime]
 Doc/
 [Examples]
 AtomicClock.py
 CommandLine.py
 Y2000.py
 alarm.py
 lifespan.py
 [mxDateTime]
 test.py
 ARPA.py
 DateTime.py
 Feasts.py
 ISO.py
 LazyModule.py
 Locale.py
 NIST.py
 ODMG.py
 Parser.py
 Timezone.py
 timegm.py

Names with trailing / are plain directories, ones with []-brackets are Python
packages, ones with ".py" extension are Python submodules.

The package imports all symbols from the extension module and also
registers the types so that they become compatible to the pickle and copy
mechanisms in Python.

52

13. Support

13. Support

eGenix.com is providing commercial support for this package, including
adapting it to special needs for use in customer projects. If you are
interested in receiving information about this service please see the
eGenix.com Support Conditions.

53

http://www.egenix.com/files/python/eGenix-mx-Extensions.html

mxDateTime - Date/Time Library for Python

14. Copyright & License

© 1997-2000, Copyright by IKDS Marc-André Lemburg; All Rights
Reserved. mailto: mal@lemburg.com

© 2000-2013, Copyright by eGenix.com Software GmbH, Langenfeld,
Germany; All Rights Reserved. mailto: info@egenix.com

This software is covered by the eGenix.com Public License Agreement,
which is included in the following section. The text of the license is also
included as file "LICENSE" in the package's main directory.

By downloading, copying, installing or otherwise using the software, you
agree to be bound by the terms and conditions of the following eGenix.com
Public License Agreement.

54

mailto:mal@lemburg.com
mailto:info@egenix.com

14. Copyright & License

EGENIX.COM PUBLIC LICENSE AGREEMENT

Version 1.1.0

This license agreement is based on the Python CNRI License Agreement, a
widely accepted open-source license.

1. Introduction

This "License Agreement" is between eGenix.com Software, Skills and
Services GmbH ("eGenix.com"), having an office at Pastor-Loeh-Str. 48, D-
40764 Langenfeld, Germany, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. License

Subject to the terms and conditions of this eGenix.com Public License
Agreement, eGenix.com hereby grants Licensee a non-exclusive, royalty-
free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the
Software alone or in any derivative version, provided, however, that the
eGenix.com Public License Agreement is retained in the Software, or in any
derivative version of the Software prepared by Licensee.

3. NO WARRANTY

eGenix.com is making the Software available to Licensee on an "AS IS"
basis. SUBJECT TO ANY STATUTORY WARRANTIES WHICH CAN NOT BE
EXCLUDED, EGENIX.COM MAKES NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, EGENIX.COM MAKES NO AND DISCLAIMS ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE
WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. LIMITATION OF LIABILITY

EGENIX.COM SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS
OF THE SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR
CONSEQUENTIAL DAMAGES OR LOSS (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER
PECUNIARY LOSS) AS A RESULT OF USING, MODIFYING OR

55

http://www.opensource.org/licenses/pythonpl.php

mxDateTime - Date/Time Library for Python

DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE
ABOVE EXCLUSION OR LIMITATION MAY NOT APPLY TO LICENSEE.

5. Termination

This License Agreement will automatically terminate upon a material breach
of its terms and conditions.

6. Third Party Rights

Any software or documentation in source or binary form provided along
with the Software that is associated with a separate license agreement is
licensed to Licensee under the terms of that license agreement. This License
Agreement does not apply to those portions of the Software. Copies of the
third party licenses are included in the Software Distribution.

7. General

Nothing in this License Agreement affects any statutory rights of consumers
that cannot be waived or limited by contract.

Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between eGenix.com
and Licensee.

If any provision of this License Agreement shall be unlawful, void, or for any
reason unenforceable, such provision shall be modified to the extent
necessary to render it enforceable without losing its intent, or, if no such
modification is possible, be severed from this License Agreement and shall
not affect the validity and enforceability of the remaining provisions of this
License Agreement.

This License Agreement shall be governed by and interpreted in all respects
by the law of Germany, excluding conflict of law provisions. It shall not be
governed by the United Nations Convention on Contracts for International
Sale of Goods.

This License Agreement does not grant permission to use eGenix.com
trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party.

56

14. Copyright & License

57

The controlling language of this License Agreement is English. If Licensee
has received a translation into another language, it has been provided for
Licensee's convenience only.

8. Agreement

By downloading, copying, installing or otherwise using the Software,
Licensee agrees to be bound by the terms and conditions of this License
Agreement.

For question regarding this License Agreement, please write to:

eGenix.com Software, Skills and Services GmbH

Pastor-Loeh-Str. 48

D-40764 Langenfeld

Germany

	Introduction
	Design
	Time Zones, Daylight Savings Time (DST) and Leap Seconds
	Calendars
	Conversion from and to other formats
	Rounding Errors and Roundtrip-Safety
	Immutability
	UTC and GMT
	Interaction with other Types
	String formats
	Speed and Memory
	Background and Resource Information on the Web

	mx.DateTime.DateTime Object
	DateTime Object Constructors
	DateTime Object Methods
	DateTime Object Attributes

	mx.DateTime.DateTimeDelta Object
	DateTimeDelta Object Constructors
	DateTimeDelta Object Methods
	DateTimeDelta Object Attributes

	mx.DateTime.RelativeDateTime Object
	RelativeDateTime Constructors
	RelativeDateTime Object Methods
	RelativeDateTime Object Attributes
	RelativeDateTime Object Usage

	mx.DateTime Functions
	mx.DateTime Constants
	Date/Time Arithmetic
	Notes:

	mxDateTime Submodules
	mx.DateTime.ISO Submodule
	Constructors & Functions
	Notes

	ISO 8601 string formats and DateTime[Delta] instances

	mx.DateTime.ARPA Submodule
	Constructors & Functions
	Notes

	mx.DateTime.Feasts Submodule
	Constructors & Functions

	mx.DateTime.Parser Submodule
	Constructors & Functions

	mx.DateTime.NIST Submodule
	Constructors & Functions
	Constants
	Examples

	Examples of Use
	mx.DateTime Python C-API
	Example
	C API Import
	C API Definition
	
	Binary Compatibility
	Type Checking

	mxDateTime Package Structure
	Support
	Copyright & License

