
Fast Text Parsing
and Processing

for Python

VVVersion 3.2 eerrssiioonn 33..22

mmxxTTeexxttTToooollss

Copyright  1997-2000 by IKDS Marc-André Lemburg, Langenfeld
Copyright  2000-2011 by eGenix.com GmbH, Langenfeld

All rights reserved. No part of this work may be reproduced or used in a any form or
by any means without written permission of the publisher.

All product names and logos are trademarks of their respective owners.

The product names "mxBeeBase", "mxCGIPython", "mxCounter", "mxCrypto",
"mxDateTime", "mxHTMLTools", "mxIP", "mxLicenseManager", "mxLog", "mxNumber",
"mxODBC", "mxODBC Connect", "mxODBC Zope DA", "mxObjectStore", "mxProxy",
"mxQueue", "mxStack", "mxTextTools", "mxTidy", "mxTools", "mxUID", "mxURL",
"mxXMLTools", "eGenix Application Server", "PythonHTML", "eGenix" and
"eGenix.com" and corresponding logos are trademarks or registered trademarks of
eGenix.com GmbH, Langenfeld

Printed in Germany.

Contents

Contents

1. Introduction .. 1

2. mxTextTools Tagging Engine .. 2
2.1 Tag List .. 2
2.2 Tag Table... 3

2.2.1 Jump Target Support ... 4
2.2.2 TagTable Objects... 4
2.2.3 Tag Table Compiler ... 5
2.2.4 Caching of Compiled Tag Tables ... 5

2.3 Tag Table Processing ... 5
2.4 Context Object Support... 6
2.5 Tagging Engine Commands ... 7
2.6 Tagging Engine Command Flags .. 10
2.7 Third Party Tools for Tag Table Writing.. 12
2.8 Debugging... 12

3. mx.TextTools.TextSearch Object ...14
3.1 TextSearch Object Constructors .. 14
3.2 TextSearch Object Methods .. 15
3.3 TextSearch Object Attributes ... 16

4. mx.TextTools.CharSet Object..17
4.1 CharSet Object Constructor .. 17
4.2 CharSet Object Methods ... 18
4.3 CharSet Object Attributes.. 18

5. mx.TextTools Functions ..20
5.1 Deprecated Functions.. 24

mxTextTools - Fast Text Parsing and Processing for Python

5.2 Undocumented Functions.. 26

6. mx.TextTools Constants... 27

7. Examples of Use .. 29

8. Optional Add-Ons for mxTextTools.. 32

9. Package Structure .. 33

10. Support ... 34

11. Copyright & License .. 35

1. Introduction

1. Introduction

mxTextTools is a collection of high-speed string manipulation routines and
new Python objects for dealing with common text processing tasks.

One of the major features of this package is the integrated mxTextTools
Tagging Engine which allows accessing the speed of compiled C programs
while maintaining the portability of Python. The Tagging Engine uses byte
code "programs" written in form of Python tuples. These programs are then
translated into an internal binary form which gets processed by a very fast
virtual machine designed specifically for scanning text data.

As a result, the Tagging Engine allows parsing text at higher speeds than
e.g. regular expression packages while still maintaining the flexibility of
programming the parser in Python. Callbacks and user-defined matching
functions extends this approach far beyond what you could do with other
common text processing methods.

A note about the word tagging: this originated from what is done in SGML,
HTML and XML to mark some text with a certain extra information. The
Tagging Engine extends this notion to assigning Python objects to text
substrings. Every substring marked in this way carries a 'tag' (the tag object)
which can be used to do all kinds of useful things.

Two other major features are the search and character set objects provided
by the package. Both are implemented in C to give you maximum
performance on all supported platforms.

If you are looking for more tutorial style documentation of mxTextTools,
there's a new book by David Mertz about Text Processing with Python
which covers mxTextTools and other text oriented tools at great length.

1

http://gnosis.cx/TPiP/

mxTextTools - Fast Text Parsing and Processing for Python

2. mxTextTools Tagging Engine

The Tagging Engine is a low-level virtual machine (VM) which executes text
search specific byte codes. This byte code is passed to the engine in form
of Tag Tables which define the "program" to execute in terms of commands
and command arguments.

The Tagging Engine is capable of handling 8-bit text and Unicode (with
some minor exceptions). Even combinations of the two string formats are
accepted, but should be avoided for performance reasons in production
code.

2.1 Tag List

Marking certain parts of a text should not involve storing hundreds of small
strings. This is why the Tagging Engine uses a specially formatted list of
tuples to return the results.

A Tag List is a list of tuples marking certain slices of a text. The tuples
always have the format

 (object, left_index, right_index, subtags)

with the following meanings:

• object contains information about the slice
[left_index:right_index] in a referenced text

• left_index and right_index are indexes into a referenced text

• subtags is either another Tag List created by recursively invoking
the Tagging Engine or None.

Note: Only the commands Table and TableInList create new
Tag Lists and make them available via subtags and then only if the
Tagging Engine was not called with None as value for the taglist.
All other commands set this tuple entry to None. This is important
to know if you want to analyze a generated Tag List, since it may
require recursing into the subtags Tag List if that entry is not
None.

2

2. mxTextTools Tagging Engine

2.2 Tag Table

To create such Tag Lists, you have to define a Tag Table and let the Tagging
Engine use it to mark the text.

Tag Tables are defined using standard Python tuples containing other tuples
in a specific format:

tag_table = (('lowercase',AllIn,a2z,+1,+2),
 ('upper',AllIn,A2Z,+1),
 (None,AllIn,white+newline,+1),
 (None,AllNotIn,alpha+white+newline,+1),
 (None,EOF,Here,-4)) # EOF

The tuples contained in the table use a very simple format:

(tagobj, command+flags, command_argument
 [,jump_no_match] [,jump_match=+1])

The meaning of the tuple contents is as follows:

• tagobj refers to the tag object that is to be associated with the
match

• command defines the Tagging Engine command to execute

• flags may be provided optionally to adjust the behavior of the
commands or how the tagobj is put to use

• command_argument is the argument to the command and defined
by the command (see 2.5 Tagging Engine Commands for details)

• jump_no_match defines the offset to apply to the program counter
(the index in the current Tag Table) in case the command did not
generate a match

• jump_match defines the offset to apply to the program counter
(the index in the current Tag Table) in case the command did
generate a match; default is to continue with the next command
tuple

3

mxTextTools - Fast Text Parsing and Processing for Python

2.2.1 Jump Target Support

To simplify writing Tag Table definitions, the Tag Table compiler also allows
using string jump targets instead of jump offsets in the tuples:

tag_table = (

 # Start scanning text and mark as lower or upper case
 'start',
 ('lowercase',AllIn,a2z,+1,'skip'),
 ('uppercase',AllIn,A2Z,'skip'),

 # Skip all whitespace
 'skip',
 (None,AllIn,white+newline,+1),
 (None,AllNotIn,alpha+white+newline,+1),

 # Continue until EOF
 (None,EOF,Here,'start')) # EOF

The string entries 'start' and 'skip' in the table can be used as jump
targets for jump_no_match and jump_match.

When compiling the definition using TagTable() or UnicodeTagTable()
they will get replaced with the corresponding numeric relative offsets at
compile time.

The strings entries themselves get replaced by a special command
JumpTarget which was added for this purpose. It is implemented as no
operation (NOP) command and only serves as placeholder, so that the
indexes in the Tag Table don't change when applying the jump target
replacement.

2.2.2 TagTable Objects

Starting with version 2.1.0 of mxTextTools, the Tagging Engine no longer
uses Tag Tables and their tuple entries directly, but instead compiles the
Tag Table definitions into special TagTable objects. These objects are then
processed by the Tagging Engine.

Even though the tag() Tagging Engine API compiles Tag Table definitions
into the TagTable object on-the-fly, you can also compile the definitions
yourself and then pass the TagTable object directly to tag().

4

2. mxTextTools Tagging Engine

2.2.3 Tag Table Compiler

The Tagging Engine uses compiled TagTable instances for performing the
scanning. These TagTables are Python objects which can be created
explicitly using a tag table definition in form of a tuple or a list (the latter are
not cacheable, so it's usually better to transform the list into a tuple before
passing it to the TagTable constructor).

The TagTable() constructor will "compile" and check the tag table
definition. It then stores the table in an internal data structure which allows
fast access from within the Tagging Engine. The compiler also takes care of
any needed conversions such as Unicode to string or vice-versa.

There are generally two different kinds of compiled TagTables: one for
scanning 8-bit strings and one for Unicode. tag() will complain if you try
to scan strings with a UnicodeTagTable or Unicode with a string TagTable.

Note that tag() can take TagTables and tuples as tag table input. If given a
tuple, it will automatically compile the tuple into a TagTable needed for the
requested type of text (string or Unicode).

2.2.4 Caching of Compiled Tag Tables

The TagTable() constructor caches compiled TagTables if they are defined
by a tuple and declared as cacheable. In that case, the compile TagTable
will be stored in a dictionary addressed by the definition tuple's id() and
be reused if the same compilation is requested again at some later point.
The cache dictionary is exposed to the user as tagtable_cache dictionary.
It has a hard limit of 100 entries, but can also be managed by user routines
to lower this limit.

2.3 Tag Table Processing

The Tagging Engine reads the Tag Table starting at the top entry. While
performing the command actions (see below for details) it moves a read-
head over the characters of the text. The engine stops when a command
fails to match and no alternative is given or when it reaches a non-existing
entry, e.g. by jumping beyond the end of the table.

Tag Table entries are processed as follows:

5

mxTextTools - Fast Text Parsing and Processing for Python

If the command matched, say the slice text[l:r], the default action is to
append (tagobj,l,r,subtags) to the taglist (this behavior can be
modified by using special flags; if you use None as tagobj, no tuple is
appended) and to continue matching with the table entry that is reached by
adding jump_match to the current position (think of them as relative jump
offsets). The head position of the engine stays where the command left it
(over index r), e.g. for (None,AllIn,'A') right after the last 'A' matched.

In case the command does not match, the engine either continues at the
table entry reached after skipping jump_no_match entries, or if this value is
not given, terminates matching the current table and returns not matched.
The head position is always restored to the position it was in before the
non-matching command was executed, enabling backtracking.

The format of the command_argument is dependent on the command. It
can be a string, a set, a search object, a tuple of some other wild animal
from Python land. See the command section below for details.

A table matches a string if and only if the Tagging Engine reaches a table
index that lies beyond the end of the table. The engine then returns
matched ok. Jumping beyond the start of the table (to a negative table
index) causes the table to return with result failed to match.

2.4 Context Object Support

The Tagging Engine supports carrying along an optional context object. This
object can be used for storing data specific to the tagging procedure, error
information, etc.

You can access the context object by using a Python function as tag object
which is then called with the context object as last argument if CallTag is
used as command flag or in matching functions which are called as a result
of the Call or CallArg commands.

To remain backward compatible, the context object is only provided as last
argument if given to the tag() function (mxTextTools prior to 2.0 did not
support this object).

New commands which make use of the context object at a lower level will
eventually appear in the Tagging Engine in future releases.

6

2. mxTextTools Tagging Engine

2.5 Tagging Engine Commands

The commands and constants used here are integers defined in
Constants/TagTables.py and imported into the package's root module.
For the purpose of explaining the taken actions we assume that the tagging
engine was called with tag(text,table,start=0,stop=len(text)).
The current head position is indicated by x.

Note that for most commands, the matching string may not be empty. This
is checked by the Tag Table Compiler.

Command Matching Argument Action

Fail Here Causes the engine to fail matching at the current head position.

Jump To Causes the engine to perform a relative jump by
jump_no_match entries.

AllIn string Matches all characters found in text[x:stop] up to the first
that is not included in string. At least one character must match.

AllNotIn string Matches all characters found in text[x:stop] up to the first
that is included in string. At least one character must match.

AllInSet set Matches all characters found in text[x:stop] up to the first
that is not included in the string set. At least one character must
match. Note: String sets only work with 8-bit text. Use
AllInCharSet if you plan to use the tag table with 8-bit and
Unicode text.

AllInCharSet CharSet object Matches all characters found in text[x:stop] up to the first
that is not included in the CharSet. At least one character must
match.

Is character Matches iff text[x] == character.

IsNot character Matches iff text[x] != character.

IsIn string Matches iff text[x] is in string.

IsNotIn string Matches iff text[x] is not in string.

7

mxTextTools - Fast Text Parsing and Processing for Python

Command Matching Argument Action

IsInSet set Matches iff text[x] is in set. Note: String sets only
work with 8-bit text. Use IsInCharSet if you plan to use the
tag table with 8-bit and Unicode text.

IsInCharSet CharSet object Matches iff text[x] is contained in the CharSet.

Word string Matches iff text[x:x+len(string)] == string.

WordStart string Matches all characters up to the first occurance of string in
text[x:stop].

If string is not found, the command does not match and the head
position remains unchanged. Otherwise, the head stays on the
first character of string in the found occurance.

At least one character must match.

WordEnd string Matches all characters up to the first occurance of string in
text[x:stop].

If string is not found, the command does not match and the head
position remains unchanged. Otherwise, the head stays on the
last character of string in the found occurance.

sWordStart TextSearch object Same as WordStart except that the TextSearch object is used to
perform the necessary action (which can be much faster) and zero
matching characters are allowed.

sWordEnd TextSearch object Same as WordEnd except that the TextSearch object is used to
perform the necessary action (which can be much faster).

sFindWord TextSearch object Uses the TextSearch object to find the given substring.

If found, the tagobj is assigned only to the slice of the substring.
The characters leading up to it are ignored.

The head position is adjusted to right after the substring -- just like
for sWordEnd.

Call function Calls the matching function(text,x,stop) or
function(text,x,stop,context) if a context object
was provided to the tag() function call.

The function must return the index y of the character in
text[x:stop] right after the matching substring.

The entry is considered to be matching, iff x != y. The engines

8

2. mxTextTools Tagging Engine

Command Matching Argument Action

head is positioned on y in that case.

CallArg (function,[arg0,...]) Same as Call except that
function(text,x,stop[,arg0,...]) or
function(text,x,stop,[,arg0,...],context)
(if a context object is used) is being called.

The command argument must be a tuple.

Table tagtable or ThisTable Matches iff tagtable matches text[x:stop].

This calls the engine recursively.

In case of success the head position is adjusted to point right after
the match and the returned taglist is made available in the subtags
field of this table's taglist entry.

You may pass the special constant ThisTable instead of a Tag
Table if you want to call the current table recursively.

SubTable tagtable or ThisTable Same as Table except that the subtable reuses this table's tag list
for its tag list. The subtags entry is set to None.

You may pass the special constant ThisTable instead of a Tag
Table if you want to call the current table recursively.

TableInList (list_of_tables,index) Same as Table except that the matching table to be used is read
from the list_of_tables at position index whenever this
command is executed.

This makes self-referencing tables possible which would
otherwise not be possible (since Tag Tables are immutable
tuples).

Note that it can also introduce circular references, so be warned !

SubTableInList (list_of_tables,index) Same as TableInList except that the subtable reuses this table's tag
list. The subtags entry is set to None.

EOF Here Matches iff the head position is beyond stop. The match
recorded by the Tagging Engine is the text[stop:stop].

Skip offset Always matches and moves the head position to x + offset.

Move position Always matches and moves the head position to
slice[position]. Negative indices move the head to
slice[len(slice)+position+1], e.g. (None,Move,-1)

9

mxTextTools - Fast Text Parsing and Processing for Python

Command Matching Argument Action

moves to EOF. slice refers to the current text slice being
worked on by the Tagging Engine.

JumpTarget Target String Always matches, does not move the head position.

This command is only used internally by the Tag Table compiler,
but can also be used for writing Tag Table definitions, e.g. to
follow the path the Tagging Engine takes through a Tag Table
definition.

Loop count Remains undocumented for this release.

LoopControl Break/Reset Remains undocumented for this release.

2.6 Tagging Engine Command Flags

The following flags can be added to the command integers defined in the
previous section:

CallTag

Instead of appending (tagobj,l,r,subtags) to the taglist upon
successful matching, call tagobj(taglist,text,l,r,subtags) or
tagobj(taglist,text,l,r,subtags,context) if a context object
was passed to the tag() function.

AppendMatch

Instead of appending (tagobj,l,r,subtags) to the taglist upon
successful matching, append the match found as string.

Note that this will produce non-standard taglists ! It is useful in
combination with join() though and can be used to implement smart
split() replacements algorithms.

AppendToTagobj

Instead of appending (tagobj,l,r,subtags) to the taglist upon
successful matching, call tagobj.append((None,l,r,subtags)).

10

2. mxTextTools Tagging Engine

AppendTagobj

Instead of appending (tagobj,l,r,subtags) to the taglist upon
successful matching, append tagobj itself.

Note that this can cause the taglist to have a non-standard format, i.e.
functions relying on the standard format could fail.

This flag is mainly intended to build join-lists usable by the join()-
function (see below).

LookAhead

If this flag is set, the current position of the head will be reset to l (the
left position of the match) after a successful match.

This is useful to implement look-ahead strategies.

Using the flag has no effect on the way the tagobj itself is treated, i.e. it
will still be processed in the usual way.

Some additional constants that can be used as argument or relative
jump position:

To

Useful as argument for 'Jump'.

Here

Useful as argument for 'Fail' and 'EOF'.

MatchOk

Jumps to a table index beyond the tables end, causing the current table
to immediately return with 'matches ok'.

MatchFail

Jumps to a negative table index, causing the current table to
immediately return with 'failed to match'.

ToBOF,ToEOF

Useful as arguments for 'Move': (None,Move,ToEOF) moves the head
to the character behind the last character in the current slice, while
(None,Move,ToBOF) moves to the first character.

ThisTable

Useful as argument for 'Table' and 'SubTable'. See above for more
information.

Internally, the Tag Table is used as program for a state machine which is
coded in C and accessible through the package as tag() function along
with the constants used for the commands (e.g. Allin, AllNotIn, etc.).

11

mxTextTools - Fast Text Parsing and Processing for Python

Note that in computer science one normally differentiates between finite
state machines, pushdown automata and Turing machines. The Tagging
Engine offers all these levels of complexity depending on which techniques
you use, yet the basic structure of the engine is best compared to a finite
state machine.

Tip: If you are getting an error TypeError: call of a non-function while
writing a table definition, you probably have a missing comma (',')
somewhere in the tuple !

2.7 Third Party Tools for Tag Table Writing

Writing these Tag Tables by hand is not always easy. However, since Tag
Tables can easily be generated using Python code, it is possible to write
tools which convert meta-languages into Tag Tables which then run on all
platforms supported by mxTextTools at nearly C speeds.

• Mike C. Fletcher has written a nice tools for generating Tag Tables
using an EBNF notation. You may want to check out his
SimpleParse add-on for mxTextTools.

• Tony J. Ibbs has also started to work in this direction. His meta-
language for mxTextTools aims at simplifying the task of writing Tag
Table tuples.

More references to third party extensions or applications built on top of
mxTextTools can be found in the Add-ons Section.

2.8 Debugging

The packages includes a nearly complete Python emulation of the Tagging
Engine in the Examples subdirectory (pytag.py). Though it is unsupported it
might still provide some use since it has a built-in debugger that will let you
step through the Tag Tables as they are executed. See the source for further
details.

As an alternative you can build a version of the Tagging Engine that
provides lots of debugging output. The feature is only enabled if the module
is compiled with debug support and output is only generated if Python is
run in debugging mode (use the Python interpreter flag: python –d
script.py).

12

http://simpleparse.sourceforge.net/
http://homepage.ntlworld.com/tibsnjoan/mxtext/metalang.html
http://homepage.ntlworld.com/tibsnjoan/mxtext/metalang.html

2. mxTextTools Tagging Engine

The resulting log file is named mxTextTools.log. It will be created in the
current working directory; messages are always appended to the file so no
trace is lost until you explicitly erase the log file. If the log file can not be
opened, the module will use stderr for reporting.

To have the package compiled using debug support, prepend the distutils
command mx_autoconf --enable-debugging to the build or install
command. This will then enable the define and compile a debugging
version of the code, e.g.

cd egenix-mx-base-X.X.X
python setup.py mx_autoconf --enable-debugging install

installs a debugging enabled version of mxODBC on both Unix and
Windows (provided you have a compiler installed).

The mxTextTools.log file should give a fairly good insight into the workings
of the Tag Engine (though it still isn't as elegant as it could be).

13

mxTextTools - Fast Text Parsing and Processing for Python

3. mx.TextTools.TextSearch Object

TextSearch objects provide a very fast way of doing repeated searches for a
string in one or more target texts.

The TextSearch object is immutable and usable for one search string per
object only. Once created, the TextSearch objects can be applied to as
many text strings as you like -- much like compiled regular expressions.
Matching is done exact (doing translations on-the-fly if supported by the
search algorithm).

Furthermore, the TextSearch objects can be pickled and implement the
copy protocol as defined by the copy module. Comparisons and hashing
are not implemented (the objects are stored by id in dictionaries).

Depending on the search algorithm, TextSearch objects can search in 8-bit
strings and/or Unicode. Searching in memory buffers is currently not
supported. Accordingly, the search string itself may also be an 8-bit string
or Unicode.

3.1 TextSearch Object Constructors

In older versions of mxTextTools there were two separate constructors for
search objects: BMS() for Boyer-Moore and FS() for the (unpublished)
FastSearch algorithm. In mxTextTools 2.1 these two constructors were
merged into one having the algorithm type as parameter.

TextSearch(match,translate=None,algorithm=default_algorithm)

Create a TextSearch substring search object for the string match
implementing the algorithm specified in the constructor.

algorithm defines the algorithm to use. Possible values are:

� BOYERMOORE

Enhanced Boyer-Moore-Horspool style algorithm for searching in 8-
bit text. Unicode is not supported. On-the-fly translation is
supported.

� FASTSEARCH

Enhanced Boyer-Moore style algorithm for searching in 8-bit text.
This algorithm provides better performance for match patterns

14

3. mx.TextTools.TextSearch Object

having repeating sequences, like e.g. DNA strings. Unicode is not
supported. On-the-fly translation is supported.

Not included in the public release of mxTextTools.

• TRIVIAL

Trivial right-to-left search algorithm. This algorithm can be used to
search in 8-bit text and Unicode. On-the-fly translation is not
supported.

algorithm defaults to BOYERMOORE (or FASTSEARCH if available) for 8-
bit match strings and TRIVIAL for Unicode match strings.

translate is an optional translate-string like the one used in the
module 're', i.e. a 256 character string mapping the oridnals of the base
character set to new characters. It is supported by the BOYERMOORE and
the FASTSEARCH algorithm only.

This function supports keyword arguments.

BMS(match[,translate])

DEPRECATED: Use TextSearch(match, translate, BOYERMOORE) instead.

FS(match[,translate])

DEPRECATED: Use TextSearch(match, translate, FASTSEARCH) instead.

3.2 TextSearch Object Methods

The TextSearch object has the following methods:

.search(text,[start=0,stop=len(text)])

Search for the substring match in text, looking only at the slice
[start:stop] and return the slice (l,r) where the substring was
found, or (start,start) if it was not found.

.find(text,[start=0,stop=len(text)])

Search for the substring match in text, looking only at the slice
[start:stop] and return the index where the substring was found, or
-1 if it was not found. This interface is compatible with string.find.

.findall(text,start=0,stop=len(text))

Same as search(), but return a list of all non-overlapping slices (l,r)
where the match string can be found in text.

15

mxTextTools - Fast Text Parsing and Processing for Python

Note that translating the text before doing the search often results in a
better performance. Use string.translate() to do that efficiently.

3.3 TextSearch Object Attributes

To provide some help for reflection and pickling the TextSearch object gives
(read-only) access to these attributes.

.match

The string that the search object will look for in the search text.

.translate

The translate string used by the object or None (if no translate string
was passed to the constructor).

.algorithm

The algorithm used by the TextSearch object. For possible values, see
the TextSearch() constructor documentation.

16

4. mx.TextTools.CharSet Object

4. mx.TextTools.CharSet Object

The CharSet object is an immutable object which can be used for character
set based string operations like text matching, searching, splitting etc.

CharSet objects can be pickled and implement the copy protocol as defined
by the copy module as well as the 'in'-protocol, so that c in charset
works as expected. Comparisons and hashing are not implemented (the
objects are stored by id in dictionaries).

The objects support both 8-bit strings and UCS-2 Unicode in both the
character set definition and the various methods. Mixing of the supported
types is also allowed. Memory buffers are currently not supported.

4.1 CharSet Object Constructor

CharSet(definition)

Create a CharSet object for the given character set definition.

definition may be an 8-bit string or Unicode.

The constructor supports the re-module syntax for defining character sets:
"a-e" maps to "abcde" (the backslash can be used to escape the special
meaning of "-", e.g. r"a\-e" maps to "a-e") and "^a-e" maps to the set
containing all but the characters "abcde".

Note that the special meaning of "^" only applies if it appears as first
character in a CharSet definition. If you want to create a CharSet with the
single character "^", then you'll have to use the escaped form: r"\^". The
non-escape form "^" would result in a CharSet matching all characters.

To add the backslash character to a CharSet you have to escape with itself:
r"\\".

Watch out for the Python quoting semantics in these explanations: the
small r in front of some of these strings makes the raw Python literal strings
which means that no interpretation of backslashes is applied: r"\\" == "\\\\"
and r"a\-e" == "a\\-e".

17

mxTextTools - Fast Text Parsing and Processing for Python

4.2 CharSet Object Methods

The CharSet object has these methods:

.contains(char)

Return 1 if char is included in the character set, 0 otherwise.

.search(text[, direction=1, start=0, stop=len(text)])

Search text[start:stop] for the first character included in the
character set. Returns None if no such character is found or the index
position of the found character.

direction defines the search direction: a positive value searches
forward starting from text[start], while a negative value searches
backwards from text[stop-1].

.match(text[, direction=1, start=0, stop=len(text)])

Look for the longest match of characters in text[start:stop] which
appear in the character set. Returns the length of this match as integer.

direction defines the match direction: a positive value searches
forward starting from text[start] giving a prefix match, while a
negative value searches backwards from text[stop-1] giving a suffix
match.

.split(text, [,start=0, stop=len(text)])

Split text[start:stop] into a list of substrings using the character set
definition, omitting the splitting parts and empty substrings.

.splitx(text, [,start=0, stop=len(text)])

Split text[start:stop] into a list of substrings using the character set
definition, such that every second entry consists only of characters in
the set.

.strip(text[, where=0, start=0, stop=len(text)])

Strip all characters in text[start:stop] appearing in the character set.

where indicates where to strip (<0: left; =0: left and right; >0: right).

4.3 CharSet Object Attributes

To provide some help for reflection and pickling the CharSet object gives
(read-only) access to these attributes.

18

4. mx.TextTools.CharSet Object

.definition

The definition string which was passed to the constructor.

19

mxTextTools - Fast Text Parsing and Processing for Python

5. mx.TextTools Functions

These functions are defined in the package:

tag(text,tagtable,sliceleft=0,sliceright=len(text),taglist=[],conte
xt=None)

This is the interface to the Tagging Engine.

text may be an 8-bit string or Unicode. tagtable must be either Tag
Table definition (a tuple of tuples) or a compiled TagTable() object
matching the text string type. Tag Table definitions are automatically
compiled into TagTable() objects by this constructor.

Returns a tuple (success, taglist, nextindex), where nextindex
indicates the next index to be processed after the last character matched
by the Tag Table.

In case of a non match (success == 0), it points to the error location in
text. If you provide a tag list it will be used for the processing.

Passing None as taglist results in no tag list being created at all.

context is an optional extension to the Tagging Engine introduced in
version 2.1.0 of mxTextTools. If given, it is made available to the Tagging
Engine during the scan and can be used for e.g. CallTag.

This function supports keyword arguments.

join(joinlist[,sep='',start=0,stop=len(joinlist)])

This function works much like the corresponding function in module
'string'. It pastes slices from other strings together to form a new string.

The format expected as joinlist is similar to a tag list: it is a sequence of
tuples (string,l,r[,...]) (the resulting string will then include the
slice string[l:r]) or strings (which are copied as a whole). Extra
entries in the tuple are ignored.

The optional argument sep is a separator to be used in joining the slices
together, it defaults to the empty string (unlike string.join). start and
stop allow to define the slice of joinlist the function will work in.

Important: The syntax used for negative slices is different than the
Python standard: -1 corresponds to the first character *after* the string,
e.g. ('Example',0,-1) gives 'Example' and not 'Exampl', like in Python. To
avoid confusion, don't use negative indices.

This function can handle mixed 8-bit string / Unicode input. Coercion is
always towards Unicode.

20

5. mx.TextTools Functions

cmp(a,b)

Compare two valid taglist tuples w/r to their slice position. This is useful
for sorting joinlists and not much slower than sorting integers, since the
function is coded in C.

joinlist(text,list[,start=0,stop=len(text)])

Produces a joinlist suitable for passing to join() from a list of tuples
(replacement,l,r,...) in such a way that all slices text[l:r] are
replaced by the given replacement.

A few restrictions apply:

• the list must be sorted ascending (e.g. using the cmp() as compare
function)

• it may not contain overlapping slices

• the slices may not contain negative indices

• if the taglist cannot contain overlapping slices, you can give this
function the taglist produced by tag() directly (sorting is not needed,
as the list will already be sorted)

If one of these conditions is not met, a ValueError is raised.

This function can handle mixed 8-bit string / Unicode input. Coercion is
always towards Unicode.

upper(string)

Returns the string with all characters converted to upper case.

Note that the translation string used is generated at import time. Locale
settings will only have an effect if set prior to importing the package.

This function is almost twice as fast as the one in the string module.

This function can handle mixed 8-bit string / Unicode input. Coercion is
always towards Unicode.

lower(string)

Returns the string with all characters converted to lower case. Same
note as for upper().

This function can handle mixed 8-bit string / Unicode input. Coercion is
always towards Unicode.

is_whitespace(text,start=0,stop=len(text))

Returns 1 iff text[start:stop] only contains whitespace characters (as
defined in Constants/Sets.py), 0 otherwise.

This function can handle 8-bit string or Unicode input.

21

mxTextTools - Fast Text Parsing and Processing for Python

replace(text,what,with,start=0,stop=len(text))

Works just like string.replace() -- only faster since a search object is
used in the process.

This function can handle mixed 8-bit string / Unicode input. Coercion is
always towards Unicode.

multireplace(text,replacements,start=0,stop=len(text))

Apply multiple replacement to a text in one processing step.

replacements must be list of tuples (replacement, left, right). The
replacement string is then used to replace the slice text[left:right].

Note that the replacements do not affect one another w/r to indexing:
indices always refer to the original text string.

Replacements may not overlap. Otherwise a ValueError is raised.

This function can handle mixed 8-bit string / Unicode input. Coercion is
always towards Unicode.

find(text,what,start=0,stop=len(text))

Works just like string.find() -- only faster since a search object is used in
the process.

This function can handle 8-bit string and Unicode input.

findall(text,what,start=0,stop=len(text))

Returns a list of slices representing all non-overlapping occurances of
what in text[start:stop]. The slices are given as 2-tuples (left,right)
meaning that what can be found at text[left:right].

This function can handle mixed 8-bit string / Unicode input. Coercion is
always towards Unicode.

collapse(text,separator=' ')

Takes a string, removes all line breaks, converts all whitespace to a
single separator and returns the result. Tim Peters will like this one with
separator '-'.

This function can handle mixed 8-bit string / Unicode input. Coercion is
always towards Unicode.

charsplit(text,char,start=0,stop=len(text))

Returns a list that results from splitting text[start:stop] at all occurances
of the character given in char.

This is a special case of string.split() that has been optimized for single
character splitting running 40% faster.

22

5. mx.TextTools Functions

This function can handle mixed 8-bit string / Unicode input. Coercion is
always towards Unicode.

splitat(text,char,nth=1,start=0,stop=len(text))

Returns a 2-tuple that results from splitting text[start:stop] at the nth
occurance of char.

If the character is not found, the second string is empty. nth may also be
negative: the search is then done from the right and the first string is
empty in case the character is not found.

The splitting character itself is not included in the two substrings.

This function can handle mixed 8-bit string / Unicode input. Coercion is
always towards Unicode.

suffix(text,suffixes,start=0,stop=len(text)[,translate])

Looks at text[start:stop] and returns the first matching suffix out of the
tuple of strings given in suffixes.

If no suffix is found to be matching, None is returned. An empty suffix
('') matches the end-of-string.

The optional 256 char translate string is used to translate the text prior
to comparing it with the given suffixes. It uses the same format as the
search object translate strings. If not given, no translation is performed
and the match done exact. On-the-fly translation is not supported for
Unicode input.

This function can handle either 8-bit strings or Unicode. Mixing these
input types is not supported.

prefix(text,prefixes,start=0,stop=len(text)[,translate])

Looks at text[start:stop] and returns the first matching prefix out of the
tuple of strings given in prefixes.

If no prefix is found to be matching, None is returned. An empty prefix
('') matches the end-of-string.

The optional 256 char translate string is used to translate the text prior
to comparing it with the given suffixes. It uses the same format as the
search object translate strings. If not given, no translation is performed
and the match done exact. On-the-fly translation is not supported for
Unicode input.

This function can handle either 8-bit strings or Unicode. Mixing these
input types is not supported.

splitlines(text)

Splits text into a list of single lines.

23

mxTextTools - Fast Text Parsing and Processing for Python

The following combinations are considered to be line-ends: '\r', '\r\n', '\n';
they may be used in any combination. The line-end indicators are
removed from the strings prior to adding them to the list.

This function allows dealing with text files from Macs, PCs and Unix
origins in a portable way.

This function can handle 8-bit string and Unicode input.

countlines(text)

Returns the number of lines in text.

Line ends are treated just like for splitlines() in a portable way.

This function can handle 8-bit string and Unicode input.

splitwords(text)

Splits text into a list of single words delimited by whitespace.

This function is just here for completeness. It works in the same way as
string.split(text). Note that CharSet().split() gives you much more
control over how splitting is performed. whitespace is defined as given
below (see Constants).

This function can handle 8-bit string and Unicode input.

str2hex(text)

Returns text converted to a string consisting of two byte HEX values, e.g.
',.-' is converted to '2c2e2d'. The function uses lowercase HEX
characters.

Unicode input is not supported.

hex2str(hex)

Returns the string hex interpreted as two byte HEX values converted to a
string, e.g. '223344' becomes '"3D'. The function expects lowercase HEX
characters per default but can also work with upper case ones.

Unicode input is not supported.

isascii(text)

Returns 1/0 depending on whether text only contains ASCII characters
or not.

5.1 Deprecated Functions

These functions are deprecated and will be removed in a future release.

24

5. mx.TextTools Functions

set(string[,logic=1])

DEPRECATED: Use CharSet() instead.

Returns a character set for string: a bit encoded version of the
characters occurring in string.

If logic is 0, then all characters not in string will be in the set.

Unicode input is not supported.

invset(string)

DEPRECATED: Use CharSet("^...") instead.

Same as set(string,0).

Unicode input is not supported.

setfind(text,set[,start=0,stop=len(text)])

DEPRECATED: Use CharSet().find() instead.

Find the first occurence of any character from set in
text[start:stop]. set must be a string obtained from set().

Unicode input is not supported.

setstrip(text,set[,start=0,stop=len(text),mode=0])

DEPRECATED: Use CharSet().strip() instead.

Strip all characters in text[start:stop] appearing in set. mode indicates
where to strip (<0: left; =0: left and right; >0: right). set must be a
string obtained with set().

Unicode input is not supported.

setsplit(text,set[,start=0,stop=len(text)])

DEPRECATED: Use CharSet().split() instead.

Split text[start:stop] into substrings using set, omitting the splitting parts
and empty substrings. set must be a string obtained from set().

Unicode input is not supported.

setsplitx(text,set[,start=0,stop=len(text)])

DEPRECATED: Use CharSet().splitx() instead.

Split text[start:stop] into substrings using set, so that every second entry
consists only of characters in set. set must be a string obtained from
set().

Unicode input is not supported.

25

mxTextTools - Fast Text Parsing and Processing for Python

5.2 Undocumented Functions

The TextTools.py also defines a few other functions, but these are left
undocumented since they may disappear in future releases.

26

6. mx.TextTools Constants

6. mx.TextTools Constants

The package exports these constants. They are defined in
Constants/Sets.

Note that Unicode defines many more characters in the following
categories. The character sets defined here are restricted to ASCII (and
parts of Latin-1) only.

a2z

'abcdefghijklmnopqrstuvwxyz'

A2Z

'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

a2z

'abcdefghijklmnopqrstuvwxyz'

umlaute

'äöüß'

Umlaute

'ÄÖÜ'

alpha

A2Z + a2z

a2z

'abcdefghijklmnopqrstuvwxyz'

german_alpha

A2Z + a2z + umlaute + Umlaute

number

'0123456789'

alphanumeric

alpha + number

white

' \t\v'

27

mxTextTools - Fast Text Parsing and Processing for Python

newline

'\n\r'

formfeed

'\f'

whitespace

white + newline + formfeed

any

All characters from \000-\377

*_charset

All of the above as CharSet() objects.

*_set

All of the above as set() compatible character sets.

tagtable_cache

This the cache dictionary which is used by the TagTable() compiler to
store compiled Tag Table definitions. It has a hard limit of 100 entries,
but can also be managed by user routines to lower this limit.

BOYERMOORE, FASTSEARCH, TRIVIAL

TextSearch() algorithm values.

28

7. Examples of Use

7. Examples of Use

The Examples/ subdirectory of the package contains a few examples of
how tables can be written and used.

Here's a non-trivial example for parsing HTML (well, most of it):

from mx.TextTools import *

Error tag object
error = '*syntax error'

Character sets
tagname_charset = CharSet(alpha+'\-'+number)
tagattrname_charset = CharSet(alpha+'\-'+number)
tagvalue_charset = CharSet('^"\'> ')
white_charset = CharSet(' \r\n\t')

tagname_charset = CharSet(alpha+'\-'+number)
tagattrname_charset = CharSet(alpha+'\-'+number)
tagvalue_charset = CharSet('^"\'> ')
white_charset = CharSet(' \r\n\t')

Tag attributes
tagattr = (
 # name
 ('name',AllInCharSet,tagattrname_charset),
 # with value ?
 (None,Is,'=',MatchOk),
 # skip junk
 (None,AllInCharSet,white_charset,+1),
 # unquoted value
 ('value',AllInCharSet,tagvalue_charset,+1,MatchOk),
 # double quoted value
 (None,Is,'"',+5),
 ('value',AllNotIn,'"',+1,+2),
 ('value',Skip,0),
 (None,Is,'"'),
 (None,Jump,To,MatchOk),
 # single quoted value
 (None,Is,'\''),
 ('value',AllNotIn,'\'',+1,+2),
 ('value',Skip,0),
 (None,Is,'\'')
)

Tag values
valuetable = (
 # ignore whitespace + '='
 (None,AllInCharSet,CharSet(' \r\n\t='),+1),
 # unquoted value
 ('value',AllInCharSet,tagvalue_charset,+1,MatchOk),
 # double quoted value
 (None,Is,'"',+5),
 ('value',AllNotIn,'"',+1,+2),
 ('value',Skip,0),
 (None,Is,'"'),
 (None,Jump,To,MatchOk),

29

mxTextTools - Fast Text Parsing and Processing for Python

 # single quoted value
 (None,Is,'\''),
 ('value',AllNotIn,'\'',+1,+2),
 ('value',Skip,0),
 (None,Is,'\'')
)

Parse all attributes of a tag
allattrs = (
 # look for attributes
 (None,AllInCharSet,white_charset,+4),
 (None,Is,'>',+1,MatchOk),
 ('tagattr',Table,tagattr),
 (None,Jump,To,-3),
 (None,Is,'>',+1,MatchOk),
 # handle incorrect attributes
 (error,AllNotIn,'> \r\n\t'),
 (None,Jump,To,-6)
)

NOTE: The htmltag tag table assumes that the input text is given
in upper case letters (see <XMP> handling).

Parse an HTML tag
htmltag = (
 (None,Is,'<'),
 # is this a closing tag ?
 ('closetag',Is,'/',+1),
 # a coment ?
 ('comment',Is,'!',+8),
 (None,Word,'--',+4),
 ('text',WordStart,'-->',+1),
 (None,Skip,3),
 (None,Jump,To,MatchOk),
 # a SGML-Tag ?
 ('other',AllNotIn,'>',+1),
 (None,Is,'>'),
 (None,Jump,To,MatchOk),
 # XMP-Tag ?
 ('tagname',Word,'XMP',+5),
 (None,Is,'>'),
 ('text',WordStart,'</XMP>'),
 (None,Skip,len('</XMP>')),
 (None,Jump,To,MatchOk),
 # get the tag name
 ('tagname',AllInCharSet,tagname_charset),
 # look for attributes
 (None,AllInCharSet,white_charset,+4),
 (None,Is,'>',+1,MatchOk),
 ('tagattr',Table,tagattr),
 (None,Jump,To,-3),
 (None,Is,'>',+1,MatchOk),
 # handle incorrect attributes
 (error,AllNotIn,'> \n\r\t'),
 (None,Jump,To,-6)
)

Parse HTML tags & text
htmltable = (# HTML-Tag
 ('htmltag',Table,htmltag,+1,+4),
 # not HTML, but still using this syntax: error or
 # inside XMP-tag !
 (error,Is,'<',+3),
 (error,AllNotIn,'>',+1),

30

7. Examples of Use

 (error,Is,'>'),
 # normal text
 ('text',AllNotIn,'<',+1),
 # end of file
 ('eof',EOF,Here,-5),
)

The above may look a bit like machine code, but it's a very fast
implementation of an HTML scanner and runs on all supported platforms.

31

mxTextTools - Fast Text Parsing and Processing for Python

8. Optional Add-Ons for mxTextTools

Mike C. Fletcher has written a Tag Table generator called SimpleParse. It
works as parser generating front end to the Tagging Engine and converts a
EBNF style grammar into a Tag Table directly useable with the tag()
function.

Andrew Dalke has written a parser generator called Martel built upon
mxTextTools which takes a regular expression grammer for a format and
turns the resultant parsed tree into a set of callback events emulating the
XML/SAX API.

32

http://simpleparse.sourceforge.net/
http://www.dalkescientific.com/Martel/

9. Package Structure

9. Package Structure

[TextTools]
 [Constants]
 Sets.py
 TagTables.py
 Doc/
 [Examples]
 HTML.py
 Loop.py
 Python.py
 RTF.py
 RegExp.py
 Tim.py
 Words.py
 altRTF.py
 pytag.py
 [mxTextTools]
 test.py
 TextTools.py

Entries enclosed in brackets are packages (i.e. they are directories that
include a __init__.py file). Ones with slashes are just ordinary
subdirectories that are not accessible via import.

The package TextTools imports everything needed from the other
components. It is sometimes also handy to do a from
mx.TextTools.Constants.TagTables import *.

Examples/ contains a few demos of what the Tag Tables can do.

33

mxTextTools - Fast Text Parsing and Processing for Python

10. Support

eGenix.com is providing commercial support for this package. If you are
interested in receiving information about this service please see the
eGenix.com Support Conditions.

34

http://www.egenix.com/files/python/eGenix-mx-Extensions.html

11. Copyright & License

11. Copyright & License

© 1997-2000, Copyright by IKDS Marc-André Lemburg; All Rights
Reserved. mailto: mal@lemburg.com

© 2000-2011, Copyright by eGenix.com Software GmbH, Langenfeld,
Germany; All Rights Reserved. mailto: info@egenix.com

This software is covered by the eGenix.com Public License Agreement,
which is included in the following section. The text of the license is also
included as file "LICENSE" in the package's main directory.

By downloading, copying, installing or otherwise using the software, you
agree to be bound by the terms and conditions of the following eGenix.com
Public License Agreement.

35

mailto:mal@lemburg.com
mailto:info@egenix.com

mxTextTools - Fast Text Parsing and Processing for Python

EGENIX.COM PUBLIC LICENSE AGREEMENT

Version 1.1.0

This license agreement is based on the Python CNRI License Agreement, a
widely accepted open-source license.

1. Introduction

This "License Agreement" is between eGenix.com Software, Skills and
Services GmbH ("eGenix.com"), having an office at Pastor-Loeh-Str. 48, D-
40764 Langenfeld, Germany, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. License

Subject to the terms and conditions of this eGenix.com Public License
Agreement, eGenix.com hereby grants Licensee a non-exclusive, royalty-
free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the
Software alone or in any derivative version, provided, however, that the
eGenix.com Public License Agreement is retained in the Software, or in any
derivative version of the Software prepared by Licensee.

3. NO WARRANTY

eGenix.com is making the Software available to Licensee on an "AS IS"
basis. SUBJECT TO ANY STATUTORY WARRANTIES WHICH CAN NOT BE
EXCLUDED, EGENIX.COM MAKES NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, EGENIX.COM MAKES NO AND DISCLAIMS ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE
WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. LIMITATION OF LIABILITY

EGENIX.COM SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS
OF THE SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR
CONSEQUENTIAL DAMAGES OR LOSS (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER
PECUNIARY LOSS) AS A RESULT OF USING, MODIFYING OR

36

http://www.opensource.org/licenses/pythonpl.php

11. Copyright & License

DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE
ABOVE EXCLUSION OR LIMITATION MAY NOT APPLY TO LICENSEE.

5. Termination

This License Agreement will automatically terminate upon a material breach
of its terms and conditions.

6. Third Party Rights

Any software or documentation in source or binary form provided along
with the Software that is associated with a separate license agreement is
licensed to Licensee under the terms of that license agreement. This License
Agreement does not apply to those portions of the Software. Copies of the
third party licenses are included in the Software Distribution.

7. General

Nothing in this License Agreement affects any statutory rights of consumers
that cannot be waived or limited by contract.

Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between eGenix.com
and Licensee.

If any provision of this License Agreement shall be unlawful, void, or for any
reason unenforceable, such provision shall be modified to the extent
necessary to render it enforceable without losing its intent, or, if no such
modification is possible, be severed from this License Agreement and shall
not affect the validity and enforceability of the remaining provisions of this
License Agreement.

This License Agreement shall be governed by and interpreted in all respects
by the law of Germany, excluding conflict of law provisions. It shall not be
governed by the United Nations Convention on Contracts for International
Sale of Goods.

This License Agreement does not grant permission to use eGenix.com
trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party.

37

mxTextTools - Fast Text Parsing and Processing for Python

38

The controlling language of this License Agreement is English. If Licensee
has received a translation into another language, it has been provided for
Licensee's convenience only.

8. Agreement

By downloading, copying, installing or otherwise using the Software,
Licensee agrees to be bound by the terms and conditions of this License
Agreement.

For question regarding this License Agreement, please write to:

eGenix.com Software, Skills and Services GmbH

Pastor-Loeh-Str. 48

D-40764 Langenfeld

Germany

	Introduction
	mxTextTools Tagging Engine
	Tag List
	Tag Table
	Jump Target Support
	TagTable Objects
	Tag Table Compiler
	Caching of Compiled Tag Tables

	Tag Table Processing
	Context Object Support
	Tagging Engine Commands
	Tagging Engine Command Flags
	Third Party Tools for Tag Table Writing
	Debugging

	mx.TextTools.TextSearch Object
	TextSearch Object Constructors
	TextSearch Object Methods
	TextSearch Object Attributes

	mx.TextTools.CharSet Object
	CharSet Object Constructor
	CharSet Object Methods
	CharSet Object Attributes

	mx.TextTools Functions
	Deprecated Functions
	Undocumented Functions

	mx.TextTools Constants
	Examples of Use
	Optional Add-Ons for mxTextTools
	Package Structure
	Support
	Copyright & License

