
Fast High-Precision Number Types for Python

Version 3.0

mmxxNNuummbbeerr

Copyright  2001-2007 by eGenix.com GmbH, Langenfeld

All rights reserved. No part of this work may be reproduced or used in a any form or
by any means without written permission of the publisher.

All product names and logos are trademarks of their respective owners. The product
names "mxBeeBase", "mxCGIPython", "mxCounter", "mxCrypto", "mxDateTime",
"mxHTMLTools", "mxLicenseManager", "mxLog", "mxNumber", "mxODBC",
"mxObjectStore", "mxProxy", "mxQueue", "mxStack", "mxTextTools", "mxTidy",
"mxTools", "mxUID", "mxURL", "mxXMLTools", "eGenix Application Server",
"PythonHTML", "eGenix" and "eGenix.com" and corresponding logos are trademarks of
eGenix.com GmbH, Langenfeld.

Printed in Germany.

Contents

Contents

1. Introduction .. 1

2. Available Number Types .. 2
2.1 Conversion from and to other formats... 2
2.2 Rounding errors... 2
2.3 Immutability .. 3
2.4 Interaction with other types... 3
2.5 String formats.. 3
2.6 Speed and Memory ... 3
2.7 Arithmetic & Coercion... 3

3. mx.Number Objects .. 5
3.1 mx.Number.Integer Object.. 5

3.1.1 Integer Object Constructors .. 5
3.1.2 Integer Object Methods .. 5
3.1.3 Integer Object Attributes... 7

3.2 mx.Number.Rational Object .. 7
3.2.1 Rational Object Constructors .. 7
3.2.2 Rational Object Methods... 7
3.2.3 Rational Object Attributes ... 8

3.3 mx.Number.Float Object ... 8
3.3.1 Float Object Constructors ... 8
3.3.2 Float Object Methods.. 9
3.3.3 Float Attributes.. 9

4. mx.Number Constants..10

5. mx.Number Functions ..11

mxNumber - Fast High-Precision Number Types for Python

6. Examples of Use .. 12

7. mx.Number Python C-API.. 13

8. Package Structure .. 14

9. Support ... 15

10. Copyright & License .. 16

1. Introduction

1. Introduction

mxNumber was created to experiment with rational numbers and to
explore means of dealing with decimal number types in database
interfacing.

Since the GNU Multi-Precision Library (GMP) already has all these number
types and also provides what people want most when it comes to numbers:
precision and speed, wrapping these as Python types seemed a natural
approach.

Unfortunately, GMP 3.1 - the current version of GMP at the time the
extension was developed - was only available for Unix platforms and
MacOS, but there was no reliable port for Windows.

As this was a show-stopper, we decided to port GMP 3.1 to Windows,
which proved to be quite challenging. The gmp31.dll is included in the
Windows version of mxNumber. The source archive with the changes and
the DLL is available on our web-site as gmp-3.1.1.win32.zip. Since the GMP
library is LGPLed, we distribute the changes under the LGPL as well.

GMP 4 and later are available for Windows as well, so this is no longer an
issue.

Note:
We are currently not continuing the development of this extension, but
still support it.

This documentation is still incomplete.

Please still consider the package experimental.

1

http://www.swox.com/gmp/
http://www.egenix.com/files/python/gmp-3.1.1.win32.zip

mxNumber - Fast High-Precision Number Types for Python

2. Available Number Types

The mxNumber package defines the following number types and
implements most interoperability features needed to use these as if they
were native Python number types:

Integer

This is an arbitrary precision integer object (like longs in Python) based
on the GMP mpz type.

Rational

This is an arbitrary precision rational object based on the GMP mpq type.
It uses two Integer objects for numerator and denominator which are
always normalized (they don't have common factors except 1).

Float

This is a variable precision float object based on the GMP mpf type. The
precision can be defined at creation time. Floats created in numeric
operations use the packages current default precision as basis.

2.1 Conversion from and to other formats

TBD

2.2 Rounding errors

TBD

2

2. Available Number Types

2.3 Immutability

One other thing to keep in mind when working with mx.Number objects is
that they are immutable (like tuples). Once an object is created you can not
change its value. Instead, you will have to create a new object with
modified values.

The advantage of having immutable objects is that they can be used as
dictionary keys and cached in various ways.

2.4 Interaction with other types

mx.Number objects can be compared and hashed, making them
compatible to the dictionary implementation Python uses (they can be used
as keys).

The copy protocol, standard arithmetic and pickle()are also supported.

2.5 String formats

TBD

2.6 Speed and Memory

TBD

2.7 Arithmetic & Coercion

TBD

3

mxNumber - Fast High-Precision Number Types for Python

The different types of this package are coerced in the following ways
(whereever possible):

 mx.Number.Float
 ^
 |
 --------> Python float
 | ^
 | |
 | mx.Number.Rational
 | ^
 | |
Python long --> mx.Number.Integer
 ^ ^
 | |
 -------- Python integer

4

3. mx.Number Objects

3. mx.Number Objects

The package provides the following data structures for working with
numeric values. These are:

• Integer for storing arbitrary precision whole numbers,

• Rational for storing exact rational numbers with infinite precision,

• Float for storing configurable precision floating point values

3.1 mx.Number.Integer Object

The Integer object is an interface to the GMP mpz number type.

Integers can store arbitrary precision whole numbers.

3.1.1 Integer Object Constructors

Integer(value)

Constructs an Integer instance from the given value.

value can be a Python integer, string, float, long or another Integer
object.

3.1.2 Integer Object Methods

An Integer object has the following methods.

.copy([memo])

Return a new reference for the instance. This function is used for the
copy-protocol. Real copying doesn't take place, since the instances are
immutable.

.even()

True iff number is even.

5

mxNumber - Fast High-Precision Number Types for Python

.factorial()

Return the factorial of the number.

.gcd(other)

Return the (positive) GCD of number and other.

.hamdist(other)

Return the Hamming Distance between number and other. Both values
must be positive.

.has_root(n)

Return 1/0 iff number has an (exact) n-th root.

.is_perfect_power()

True iff number is a perfect power.

.is_perfect_square()

True iff number is a perfect square.

.jacobi()

Return the Jacobi symbol for number.

.lcm(other)

Return the (positive) LCM of number and other.

.legendre()

Return the Legendre symbol for number.

.odd()

True iff number is odd.

.over(k)

Return the binomial coefficient number over k.

.popcount()

Return the population count for number. Number must be positive.

.prime(reps)

Return 1 if number is a prime, 2 if number is probably prime and 3 if
number surely prime according to the Miller-Rabin test. 0 is returned for
non-primes. Higher values for reps increase the probability.

.root(n)

Return the (truncated) n-th root of the number.

6

3. mx.Number Objects

.sign()

Return the sign of the number.

.sqrt()

Return the square root of the number.

3.1.3 Integer Object Attributes

Integer objects currently don't have attributes.

3.2 mx.Number.Rational Object

The Rational object is an interface to the GMP mpq number type.

Rationals can store exact rational numbers with infinite precision.

3.2.1 Rational Object Constructors

Rational(value[,denominator])

Constructs a Rational instance from the given value. If denominator is
given, value is interpreted as numerator.

value and denominator can be Python integers, strings, floats, longs or
Integer objects.

FareyRational(value, maxden)

Returns a Rational-object reflecting the given value and using maxden as
maximum denominator.

3.2.2 Rational Object Methods

An Rational object has the following methods.

.copy([memo])

Return a new reference for the instance. This function is used for the
copy-protocol. Real copying doesn't take place, since the instances are
immutable.

7

mxNumber - Fast High-Precision Number Types for Python

.format(base, precision=0)

Return a string representing the Rational in the given base.

For base10, a precision value >= 0 will return an approximate decimal
point representation of the Rational, while setting precision to 0 causes
the 'nominator/denominator' format to be used. precision has no
meaning for non-base10 values.

Note that representation using the decimal point are only accurate to
approximately 17 digits (C doubles are used for the formatting).

.sign()

Return the sign of the number.

3.2.3 Rational Object Attributes

An Rational object has the following attributes.

.denominator

Denominator Integer-object of the Rational.

.numerator

Numerator Integer-object of the Rational.

3.3 mx.Number.Float Object

The Float object is an interface to the GMP mpf number type.

Floats can store configurable precision floating point values.

3.3.1 Float Object Constructors

Float(value[,precision=64])

Constructs a Float instance from the given value.

precision gives the number of bits which should at least be used to store
the floating point value.

8

3. mx.Number Objects

3.3.2 Float Object Methods

A Float object has the following methods.

.sign()

Return the sign of the Float.

.format(base, precision=0)

Return a string representing the Float.

precision defines the maximum number of significant digits to use, 0
means to let the implementation choose the value depending on the
Float's storage precision.

3.3.3 Float Attributes

A Float object has the following attributes.

.precision

The number of bits used by the object to store the floating point value.

9

mxNumber - Fast High-Precision Number Types for Python

4. mx.Number Constants

The package defines these constants:

Error

This exception will be raised for problems related to the types.
Exceptions will normally only be raised by functions, methods or
arithmetic operations.

IntegerType, RationalType, FloatType

The type objects for the objects.

mxNumberAPI

The C API wrapped by a C object. See mxNumber.h for details.

10

5. mx.Number Functions

5. mx.Number Functions

The package currently does not define any additional functions.

11

mxNumber - Fast High-Precision Number Types for Python

6. Examples of Use

TBD

This snippet demonstrates some of the possible interactions of mxNumber
types and Python number types:

>>> from mx.Number import *

>>> # To be written...

More examples will appear in the Examples subdirectory of the package.

12

7. mx.Number Python C-API

7. mx.Number Python C-API

mxNumber exposes a Python C-API which can easily be used by other
Python extensions. Please have look at the file mxNumber.h for details.

To access the module, do the following (note the similarities with Python's
way of accessing functions from a module):

#include "mxNumber.h"

...
 PyObject *v;

 /* Import the mxNumber module */
 if (mxNumber_ImportModuleAndAPI())
 goto onError;

 /* Access functions from the exported C API through mxNumber */
 v = mxNumber.Integer_FromString("123");
 if (!v)
 goto onError;

 /* Type checking */
 if (mxNumber_Check(v))
 printf("Works.\n");

 Py_DECREF(v);
...

13

mxNumber - Fast High-Precision Number Types for Python

8. Package Structure

[Number]
 Doc/
 [Examples]
 [mxNumber]
 win32/
 test.py
 LazyModule.py
 Number.py

Names with trailing / are plain directories, ones with []-brackets are Python
packages, ones with ".py" extension are Python submodules.

The package imports all symbols from the extension module and also
registers the types so that they become compatible to the pickle and copy
mechanisms in Python.

14

9. Support

9. Support

eGenix.com is providing commercial support for this package. If you are
interested in receiving information about this service please see the
eGenix.com Support Conditions.

15

http://www.egenix.com/files/python/eGenix-mx-Extensions.html

mxNumber - Fast High-Precision Number Types for Python

10. Copyright & License

© 2001-2007, Copyright by eGenix.com Software GmbH, Langenfeld,
Germany; All Rights Reserved. mailto: info@egenix.com

This software is covered by the eGenix.com Public License Agreement,
which is included in the following section. The text of the license is also
included as file "LICENSE" in the package's main directory.

Please note that GMP, the library against which this extension is linked,
falls under the Library GNU Public License (LGPL). Our modifications to the
GMP 3.1 library code which were needed for the Windows port also fall
under the LGPL. They are available for download on our web-site as gmp-
3.1.1.win32.zip.

By downloading, copying, installing or otherwise using the software, you
agree to be bound by the terms and conditions of the following eGenix.com
Public License Agreement.

16

mailto:info@egenix.com
http://www.gnu.org/copyleft/lesser.html
http://www.egenix.com/files/python/gmp-3.1.1.win32.zip
http://www.egenix.com/files/python/gmp-3.1.1.win32.zip

10. Copyright & License

EGENIX.COM PUBLIC LICENSE AGREEMENT

Version 1.1.0

This license agreement is based on the Python CNRI License Agreement, a
widely accepted open-source license.

1. Introduction

This "License Agreement" is between eGenix.com Software, Skills and
Services GmbH ("eGenix.com"), having an office at Pastor-Loeh-Str. 48, D-
40764 Langenfeld, Germany, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. License

Subject to the terms and conditions of this eGenix.com Public License
Agreement, eGenix.com hereby grants Licensee a non-exclusive, royalty-
free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the
Software alone or in any derivative version, provided, however, that the
eGenix.com Public License Agreement is retained in the Software, or in any
derivative version of the Software prepared by Licensee.

3. NO WARRANTY

eGenix.com is making the Software available to Licensee on an "AS IS"
basis. SUBJECT TO ANY STATUTORY WARRANTIES WHICH CAN NOT BE
EXCLUDED, EGENIX.COM MAKES NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, EGENIX.COM MAKES NO AND DISCLAIMS ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE
WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. LIMITATION OF LIABILITY

EGENIX.COM SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS
OF THE SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR
CONSEQUENTIAL DAMAGES OR LOSS (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER
PECUNIARY LOSS) AS A RESULT OF USING, MODIFYING OR

17

http://www.opensource.org/licenses/pythonpl.php

mxNumber - Fast High-Precision Number Types for Python

DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE
ABOVE EXCLUSION OR LIMITATION MAY NOT APPLY TO LICENSEE.

5. Termination

This License Agreement will automatically terminate upon a material breach
of its terms and conditions.

6. Third Party Rights

Any software or documentation in source or binary form provided along
with the Software that is associated with a separate license agreement is
licensed to Licensee under the terms of that license agreement. This License
Agreement does not apply to those portions of the Software. Copies of the
third party licenses are included in the Software Distribution.

7. General

Nothing in this License Agreement affects any statutory rights of consumers
that cannot be waived or limited by contract.

Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between eGenix.com
and Licensee.

If any provision of this License Agreement shall be unlawful, void, or for any
reason unenforceable, such provision shall be modified to the extent
necessary to render it enforceable without losing its intent, or, if no such
modification is possible, be severed from this License Agreement and shall
not affect the validity and enforceability of the remaining provisions of this
License Agreement.

This License Agreement shall be governed by and interpreted in all respects
by the law of Germany, excluding conflict of law provisions. It shall not be
governed by the United Nations Convention on Contracts for International
Sale of Goods.

This License Agreement does not grant permission to use eGenix.com
trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party.

18

10. Copyright & License

19

The controlling language of this License Agreement is English. If Licensee
has received a translation into another language, it has been provided for
Licensee's convenience only.

8. Agreement

By downloading, copying, installing or otherwise using the Software,
Licensee agrees to be bound by the terms and conditions of this License
Agreement.

For question regarding this License Agreement, please write to:

eGenix.com Software, Skills and Services GmbH

Pastor-Loeh-Str. 48

D-40764 Langenfeld

Germany

	Introduction
	Available Number Types
	Conversion from and to other formats
	Rounding errors
	Immutability
	Interaction with other types
	String formats
	Speed and Memory
	Arithmetic & Coercion

	mx.Number Objects
	mx.Number.Integer Object
	Integer Object Constructors
	Integer Object Methods
	Integer Object Attributes

	mx.Number.Rational Object
	Rational Object Constructors
	Rational Object Methods
	Rational Object Attributes

	mx.Number.Float Object
	Float Object Constructors
	Float Object Methods
	Float Attributes

	mx.Number Constants
	mx.Number Functions
	Examples of Use
	mx.Number Python C-API
	Package Structure
	Support
	Copyright & License

