
One file Python
Runtime

VVVersion 2.2 eerrssiioonn 22..22

eeGGeenniixx PPyyRRuunn

Copyright 2008-2016 by eGenix.com GmbH, Langenfeld

All rights reserved. No part of this work may be reproduced or used in a any form or
by any means without written permission of the publisher.

All product names and logos are trademarks of their respective owners.

The product names "mxBeeBase", "mxCGIPython", "mxCounter", "mxCrypto",
"mxDateTime", "mxHTMLTools", "mxIP", "mxLicenseManager", "mxLog", "mxNumber",
"mxODBC", "mxODBC Connect", "mxODBC Zope DA", "mxObjectStore", "mxProxy",
"mxQueue", "mxStack", "mxTextTools", "mxTidy", "mxTools", "mxUID", "mxURL",
"mxXMLTools", "eGenix Application Server", "PyRun", "PythonHTML", "eGenix" and
"eGenix.com" and corresponding logos are trademarks or registered trademarks of
eGenix.com GmbH, Langenfeld

Printed in Germany.

Contents

Contents

1. Introduction..1

1.1 Features...1

1.2 System Requirements..2

1.2.1 Source Installations.. 2
1.2.2 Binary Installations .. 3

1.3 Installation...3

1.3.1 Windows Installer.. 4
1.3.2 Quick install using install-pyrun... 4

Using install-pyrun ... 4
install-pyrun is secure... 6
Setup a complete Python environment in one go using -r
requirements.txt ... 6
Manual PyRun installation .. 7

1.3.3 Prebuilt Binary Distribution ... 7
1.3.4 eGenix PyRun Directory Structure ... 7
1.3.5 Shipping custom external libraries with eGenix PyRun........................... 8

Default rpath .. 8
Override rpath at runtime... 9
Change or disable rpath setting .. 9

1.3.6 Building you own eGenix PyRun binary ... 9
Testing ... 9
Customization Options .. 10

2. eGenix PyRun Internals12

eGenix PyRun - One file Python runtime

2.1 PyRun Building Parts ... 12

2.1.1 The PyRun Makefile ... 13
2.1.2 Adding Python modules/packages to eGenix PyRun............................. 13
2.1.3 Removing Python modules/packages from eGenix PyRun 13

2.2 Differences compared to Python....................................... 14

2.2.1 Changes compared to standard Python.. 14
Default PYTHONIOENCODING in Python 3................................... 14
User site configurations disabled .. 15
Disabled check for Python build directory installations................... 15
Special lib/site-python directory not included in default sys.path 15

2.2.2 Additional features compared to Python .. 16
Disabling HTTPS certificate verification... 16

2.2.3 Compatibility fixes applied to Python... 16
Frozen modules always have a __file__ attribute 16
Python system configuration included in pyrun_config.py 17
Integrated lib2to3 grammar files ... 17
Added list of available lib2to3 fixes to config 18
Bug fixes to Python stdlib modules ... 18
Statically linked standard library modules 18

2.2.4 Standard library modules not linked into PyRun................................... 18
2.2.5 Include files not included in PyRun executable..................................... 19
2.2.6 Some things that don't work .. 19

File access to resources in packages ... 20
Running frozen packages with -m... 20
Python test suite issues... 20
Not all Python command line options available 21

3. Examples of Use ... 22

3.1 eGenix PyRun Command Line Options 23
Available options .. 24

3.2 Debugging eGenix PyRun Installations 25

3.2.1 More information about PyRun paths and settings............................... 25

Contents

3.2.2 Debugging imports and import searches ... 27

4. Support ...29

5. Copyright & License..30

1. Introduction

1. Introduction
eGenix PyRun™ is our one-file, portable, no-install version of Python,
making the distribution of a Python interpreter to run based scripts and
applications to Unix based systems as simple as copying a single file.

1.1 Features

• Small footprint: only about 11 MB in size for Python 2.x and only
around 13 MB for Python 3.x. Can be further compressed down to
just 3-4 MB using e.g. upx.

• Python 2.6, 2.7, 3.4 and 3.5 Support: PyRun works with all popular
Python versions. We chose the single source approach for
achieving this, but had to drop Python 2.5 support as a result.

• Cross Platform Support: PyRun runs on the following platforms:
Linux, FreeBSD and Mac OS X.

• Full 64-bit Support: PyRun can be built on both 32-bit and 64-bit
builds on all supported platforms.

• Highly Portable Codebase: in addition to the already supported
platforms for PyRun, we provide custom porting services for more
exotic platforms.

• Easy Installation: Simply drop the executable into a directory and
start using it. No installers, no packagers and only a minimal set of
dependencies needs to be provided.

• Fully Relocatable: eGenix PyRun uses relative search paths, so you
can easily move the installation around.

• Compatible with setuptools, easy_install, pip: Great care was taken
to make sure that PyRun can be used with setuptools et al.1

• Perfect virtualenv replacement: PyRun provides an even better level
of isolation from the system installed Python version. Instead of

1 Please note that setuptools and pip are not designed to be relocatable.

1

eGenix PyRun - One file Python runtime

using symlinks and other tricks to create a virtual Python
environments, PyRun comes with a complete Python runtime and
thus doesn't need to play any tricks.

• install-pyrun script: Using the bash script install-pyrun, we make
the whole installation process even easier. It automatically
downloads and installs the right version for your platform and also
take care of adding setuptools and pip to the PyRun installation.

• Install a complete Python runtime including dependencies in one
go: using our install-pyrun installation bash script, you can install
PyRun as well as all dependencies using a single install-pyrun
-r requirements.txt run.

• Open Source: PyRun is licensed under the eGenix Public License.
This Python-style makes it possible to integrate PyRun into other
open-source or commercial products

• Commerical Support: eGenix provides commercial support for
PyRun, in case you need custom builds, help with the integration
or need problem solving support.

1.2 System Requirements

eGenix PyRun integrates a few standard Python extension modules, which
rely on system provided third-party libraries to be available on the build
system as development versions, and on the target system as binary
versions.

1.2.1 Source Installations

eGenix PyRun needs these third party tools to be available on the target
machines:

• OpenSSL 1.0.0 or later

• zlib 1.2 or later

• SQLite 3.4 or later

• bzip2 1.0 or later

2

https://downloads.egenix.com/python/install-pyrun
https://downloads.egenix.com/python/install-pyrun

1. Introduction

• liblzma 5.0 or later (Python 3 only)

Future versions of PyRun will add more flexibility to the build process to
make the requirements more customizable.

If you want to compile PyRun yourself, you will also need the development
packages of the above tools, a C compiler and a GNU make compatible
make installed.

Please note that the binary versions of these libraries also need to be
available on the PyRun installation target systems. Most modern Unix
systems have the above libraries installed per default.

1.2.2 Binary Installations

The readily built version of eGenix PyRun we make available on our website
were built using these library versions:

• OpenSSL 1.0.2 or later

• zlib 1.2 or later

• SQLite 3.4 or later

• bzip2 1.0 or later

• libzma 5.0 or later (Python 3 only)

1.3 Installation

Installation of eGenix PyRun can be done in three ways:

• using the bash script install-pyrun for automatic installation

• downloading and installing a precompiled binary from
www.egenix.com, or

• from sources by compiling your own version.

The following sections explain these options.

3

https://downloads.egenix.com/python/install-pyrun
http://www.egenix.com/

eGenix PyRun - One file Python runtime

1.3.1 Windows Installer

eGenix PyRun currently does not support Windows platforms.

We will look into making eGenix PyRun compatible with Windows in one of
the upcoming releases.

1.3.2 Quick install using install-pyrun

To simplify the installation of eGenix PyRun and make it as easy to use as
virtualenv, we've created a shell script called install-pyrun that you can
download from our server. It is also distributed in the source archives of
PyRun in the PyRun/ folder.

After download of the script, you have to make it executable and place it on
your path:

cd ~/bin
curl -O https://downloads.egenix.com/python/install-pyrun
chmod 755 install-pyrun

The script is a simple bash script, so you can inspect it with any text editor.

 Using install-pyrun

With the script, you can automate the whole installation process easily. In
order to install the set of eGenix PyRun (together with the Python include
files and some extra C extensions from the stdlib that are not compiled into
PyRun), setuptools and pip to a new directory targetdir, just run the
following command:

./install-pyrun targetdir

This will then download a suitable eGenix PyRun binary distribution for
your platform, install setuptools and pip:

$ install-pyrun targetdir
Installing eGenix PyRun ...
Installing local setuptools 15.2 ...
Installing local pip 1.5.6 ...

eGenix PyRun was installed in targetdir

To run eGenix PyRun, use targetdir/bin/pyrun

$ cd targetdir

$ bin/pyrun -c 'print "Hello World!"'
Hello World!

$ bin/pyrun
eGenix PyRun 2.7.8 (release 2.0.1, default, Aug 27 2014, 00:58:48)
[GCC 4.5.1 20101208 [gcc-4_5-branch revision 167585]]

4

http://downloads.egenix.com/python/install-pyrun
https://downloads.egenix.com/python/install-pyrun

1. Introduction

Thank you for using eGenix PyRun. Type "help" or "license" for
details.
>>>

The script comes with a set of options to customize the version, platform,
Unicode variant and also allows disabling installation of setuptools and pip
as well as permit installation from a local PyRun archive.

Simply run the script with option -h to see all options:

$./install-pyrun -h

Install eGenix PyRun in a given target directory.

USAGE:
 install-pyrun [options] targetdir

OPTIONS:
 -m or --minimal
 install eGenix PyRun only (no setuptools and pip)
 -l of --log
 log installation to targetdir/pyrun-installation.log
 -q or --quiet
 quiet installation
 -r or --requirements
 have pip install the given requirements (only works
 if pip is installed as part of the pyrun installation)

 --python=2.7
 install PyRun for Python version 2.6, 2.7 (default),
 3.4, 3.5
 --python-unicode=ucs2
 install PyRun for Python Unicode version
 ucs2 (default for Python 2) or ucs4 (default for Python 3)
 --pyrun=2.2.0
 install PyRun version 2.2.0 (default)

 --platform=linux-i686
 install PyRun for the given platform; this is usually
 auto-detected
 --platform-list
 list available platform strings

 --pyrun-distribution=pyrun.tgz
 use the given PyRun distribution file; this overrides
 all other distribution selection parameters
 --pyrun-executable=pyrun
 symlink to and use an alternative name for the PyRun
 executable

 --setuptools-distribution=setuptools.tgz
 use the given setuptools distribution file instead of
 downloading it from PyPI
 --setuptools-version=15.2
 install the setuptools 15.2 (default); use
 --setuptools-version=latest to automatically find the
 latest version on PyPI
 --distribute-distribution=distribute.tgz
 alias for --setuptools-distribution

 --pip-distribution=pip.tgz
 use the given pip distribution file instead of
 downloading it from PyPI

5

eGenix PyRun - One file Python runtime

 --pip-version=1.5.6
 install the pip 1.5.6 (default); use --pip-version=latest
 to automatically find the latest version on PyPI

 --help
 show this text
 --version
 show the script version
 --copyright
 show copyright
 --debug
 enable debug output
 --disable-certificate-checks
 disable certificate checks when downloading packages;
 this should normally not be needed

Without options, the script installs eGenix PyRun, setuptools and pip
in targetdir. If no local versions of setuptools or pip are found, the
tools are downloaded from pypi.python.org.

The exact versions of pyrun, pip and setuptools listed in the above output
may be different in case you downloaded a more recent version of the
script.

 install-pyrun is secure

install-pyrun will use curl as default downloader, and fallback to wget, if
curl is not available. The script defaults to operating the downloaders in
secure mode, i.e. all links are HTTPS links and all certificates are verified
before proceeding with the download.

Both the pypi.python.org and our downloads.egenix.com servers use
HTTPS for enhanced security.

 Setup a complete Python environment in one go using -r
requirements.txt

install-pyrun also supports the useful pip install -r requirements.txt
instruction, so that you can set up a complete Python runtime environment
in one go.

Simply create a requirements.txt file using the same format as supported by
pip and then pass the -r option to install-pyrun.

requirements.txt:

Django==1.8.0
pytz
egenix-mx-base == 3.2.8

Then run install-pyrun:

$./install-pyrun -r requirements.txt projectdir

6

https://pip.pypa.io/en/latest/user_guide.html
https://pip.pypa.io/en/latest/reference/pip_install.html

1. Introduction

 Manual PyRun installation

If you'd rather install eGenix PyRun manually, you can do so by
downloading the prebuilt binaries yourself. Please see the next section for
details.

1.3.3 Prebuilt Binary Distribution

Simply download a suitable binary distribution for the version of Python
and platform you need and extract it to a base directory where you'd like
PyRun to live. Then use the eGenix PyRun executable like you'd use a
regular Python interpreter, e.g.

./bin/pyrun2.7 myscript.py

You can also put pyrun into the shebang of the script, e.g.

#!/usr/bin/env pyrun2.7
Hello World Demo
print "Hello World!"

Please note that the binary distributions contain more than just the PyRun
executable. They also come with a few extra standard library extensions
which are normally not part of PyRun and the include files needed to
compile Python extensions for use with PyRun.

If you are just looking for the plain single-file PyRun executable, only extract
the file bin/pyrunX.X (with X.X being the underlying Python version, e.g.
2.7) from the binary distributions.

1.3.4 eGenix PyRun Directory Structure

If you want to install other libraries or packages for use in eGenix PyRun,
you need to pay a little more attention to where you copy the executable.
eGenix PyRun assumes the following directory layout relative to the
executable (with X.X being the underlying Python version, e.g. 2.7):

• bin/pyrunX.X

• lib/pythonX.X

• include/pythonX.X (Python 2) or include/pythonX.Xm (Python 3)

7

eGenix PyRun - One file Python runtime

The lib/pythonX.X directory is used as location of the Python libraries and
automatically put on sys.path in case it is available. Optional packages
installed through distutils or setuptools will go into the corresponding
lib/pythonX.X/site-packages/ directory.

The lib/pythonX.X directory may also contain Python standard library
extension modules in the lib-dynload/ sub-directory which are not
integrated into the eGenix PyRun executable. The prebuilt binary
distributions come with a set of such extensions.

The include/pythonX.X directory is only needed in case you want to
compile Python C extensions. It is available as part of the prebuilt binary
distributions we make available. For Python 3, the include directory has the
ABI flags appended. For Python 3.4, this is include/python3.4m for most
Python installations, for Python 3.5 include/python3.5m.

Please note that while eGenix PyRun itself is fully relocatable after
installation due to the relative search path, the tools setuptools and pip
are not. They hard-code the paths into their scripts, so you can not
relocate a PyRun installation, after these tools have been installed.

1.3.5 Shipping custom external libraries with eGenix
PyRun

To facilitate shipping custom external libraries with PyRun, newer versions
of PyRun (2.1 and later) add an rpath setting to the binary which results in
the dynamic linker on compatible systems to first look in these directories
for shared libraries such as OpenSSL, SQlite, ZLib, BZip2 or LZMA (Python
3 only) libraries. or SQLite.

The rpath setting defines a dynamic library search path which is used if no
LD_LIBRARY_PATH OS environment variable is set.

 Default rpath

Default rpath in eGenix PyRun 2.1 and later:

• $ORIGIN

• $ORIGIN/../lib

• $ORIGIN/../lib/pythonX.X/site-packages/OpenSSL

8

http://en.wikipedia.org/wiki/Rpath

1. Introduction

The $ORIGIN entry is a placeholder which is replaced with the directory of
the pyrun binary by the dynamic linker at load time.

The above path first looks in the same directory as the pyrun binary, then
in the ../lib/ directory and then in the OpenSSL site-packages directory.

The latter is added to simplify using our egenix-pyopenssl package with
eGenix PyRun. The package ships up-to-date OpenSSL libraries inside the
package directory.

 Override rpath at runtime

You can override this rpath by setting the OS environment variable
LD_LIBRARY_PATH. A linker search path given in LD_LIBRARY_PATH will
then be prepended to the search path.

 Change or disable rpath setting

If you want to compile your own eGenix PyRun executable you canyou’re
your own default rpath by adjusting the PYRUNRPATH variable in the
PyRun/Makefile.

1.3.6 Building you own eGenix PyRun binary

In order to build your own version, simply download the above source
archive, untar/unzip it to a temporary directory and follow these steps:

cd egenix-pyrun-*
cd PyRun
make
make install

This will download the Python source distribution and start a build of
eGenix PyRun. The result will be installed to the directory /usr/local/ using
the directory layout as described above.

If you'd like to build a binary distribution archive, use the following
commands instead:

cd egenix-pyrun-*
cd PyRun
make distribution

You can then pick up the distribution archive from the dist/ directory.

 Testing

To run some simple tests, please use the test-distribution target:

9

http://www.egenix.com/products/python/pyOpenSSL/

eGenix PyRun - One file Python runtime

make test-distribution

This will install the distribution you just built, install it locally in a test
directory and run a few tests, including pip installations of sizeable
packages such as NumPy, Cython and Django.

Note that only the installation itself is tested, not the packages themselves.

 Customization Options

 Changing installation directory

If you would rather install to a different directory, you can add the make
parameter PREFIX=/path/to/pyrun/, This will cause make to install
eGenix PyRun in /path/to/pyrun/.

Example:

Install eGenix PyRun to local dir:
make PREFIX=local-test/

 Building a different Python version

If you want to build against a specific Python version, you can specify the
version using the make parameter PYTHONFULLVERSION=2.7.5. Please
have a look at the top of the PyRun/Makefile for supported Python
versions.

Example:

Build eGenix PyRun for Python 3.5.1:
make PYTHONFULLVERSION=3.5.1

 Building against custom OpenSSL library installations

eGenix PyRun will per default look in these directories for a suitable
OpenSSL installation (both include files and libraries):

• /usr/local/ssl - for Linux and many other Unix platforms

• /usr/contrib. - for HP-UX

• /usr/sfw - for Solaris/OpenIndiana

• /usr - as fallback location

It is also possible to set the OpenSSL installation directory by passing
SSL=/path/to/openssl to the make command.

10

1. Introduction

Example:

Build eGenix PyRun for local OpenSSL install:
make SSL=/home/lemburg/my-openssl

 Passing in special compile / link options

The eGenix PyRun PyRun/Makefile supports passing in parameters for
CFLAGS and LDFLAGS, which are then used for building the Python
interpreter and the frozen pyrun binary.

Example:

Build eGenix PyRun with
make CFLAGS="-I /home/lemburg/my-include-files"

 More customization options

Please have a look at the PyRun/Makefile for more customization
options.

For future versions of eGenix PyRun, we plan to make the setup
customizable via a top-level setup.py file so you can use Python to trigger
the build, customize the included standard lib extension modules and
installation.

11

eGenix PyRun - One file Python runtime

2. eGenix PyRun Internals
eGenix PyRun uses the standard Python freeze tool, which you can find the
Tools/freeze/ directory of the Python source code distribution to combine
the Python interpreter with a large subset of the Python standard library
into a single-file Python runtime.

We have applied a few customizations to the freeze tool and ship separate
versions for Python 2 and Python 3 with the source distribution of eGenix
PyRun.

2.1 PyRun Building Parts

In order to use freeze.py for creating PyRun, we had to implement these
steps:

• we created a freeze.py template
(PyRun/Runtime/pyrun_template.py) which provides a mostly
compatible command line interface to the standard Python
interpreter and references the standard library modules that we
wanted to include in PyRun,

• we extract the Python configuration information from the Python
Makefile and configure files and put this information into a static
configuration template (PyRun/Runtime/pyrun_config_template.py),
which is then used by sysconfig.py to load the configuration,

• we extract the Python grammar files the Python stdlib, so that the
lib2to3 package can work without having the files loaded from the
file system and put this information into a static configuration
template (PyRun/Runtime/pyrun_grammar_template.py), which is
then used by lib2to3 to load the configuration,

• we created a script (PyRun/makepyrun.py) which creates all the
necessary pyrun*.py files from the templates,

• we added patches to Python (PyRun/Runtime/Python-*.patch) and
the Modules/Setup files (PyRun/Runtime/Setup.PyRun-*) to be able
to statically link in extension modules that would normally be built

12

2. eGenix PyRun Internals

as shared modules and to provide a pure-Python implementation
of the Python command line interface.

2.1.1 The PyRun Makefile

The PyRun/Makefile extracts the Python source code, applies the patches
and adds the Modules/Setup file.

It then creates the pyrunX.X.py freeze.py template, the pyrun_config.py
module and runs PyRun/Runtime/freeze/freeze.py on the generated
pyrunX.X.py file.

freeze.py then generates the frozen module versions and a Makefile in
PyRun/Runtime/Makefile which can then be used to build the pyrunX.X
executable.

The PyRun/Makefile also takes care of installing the executable together
with the include files and optional shared modules built during the process;
as well as packaging the builds into binary .tar.gz files, which can simply be
extracted anywhere in the file system to "install" eGenix PyRun.

2.1.2 Adding Python modules/packages to eGenix PyRun

The easiest way to have modules or whole packages added to PyRun is to
modify PyRun/Runtime/pyrun_extras.py and import them in that file.

freeze.py will then automatically find the modules and referenced
packages, freeze and add them to PyRun.

Alternatively, you can also edit the PyRun/Runtime/makepyrun.py file and
add the modules/packages in the configuration section near the top of that
module.

In a future version of eGenix PyRun, we're going to simplify this process so
that you can pass the modules to include as parameter to the build script.

2.1.3 Removing Python modules/packages from eGenix
PyRun

If you want to further reduce the PyRun file size, you can remove additional
modules/packages from the frozen binary by editing the

13

eGenix PyRun - One file Python runtime

PyRun/Runtime/makepyrun.py file and adding the modules/packages to the
remove lists.

In some cases, this may not be enough to completely remove the
modules/packages, e.g. if you still have other modules in PyRun which
reference the removed modules/packages, freeze.py is going to re-add
them in the module search process.

To overcome this limitation, you will have to additionally add the
modules/packages to the PyRun/Makefile EXCLUDES variable.

In a future version of eGenix PyRun, we're going to simplify this process so
that you can pass the modules to exclude as parameter to the build script.

2.2 Differences compared to Python

eGenix PyRun provides a robust production runtime environment, but has
to make some compromises due to the way it is built.

This section explains the enhancements and known incompatibilities
compared to a regular Python installation.

2.2.1 Changes compared to standard Python

This is a list of changes we have applied compared to standard Python.
Unlike the compatibility fixes listed in the next sections, these are features
that are not necessary to get eGenix PyRun to work, but ones that we think
are slightly more useful than the standard Python choices.

 Default PYTHONIOENCODING in Python 3

In Python 3.4+, the Python I/O encoding is determined by looking at the
locale of the process. Depending on the used system, this can be UTF-8,
ASCII or some other encoding.

Since we think it's better to either correctly set the encoding via an
environment variable such as PYTHONIOENCODING and not guess, we
chose to define a default for the PYTHONIOENCODING which is used, in
case this environment variable is not set.

14

2. eGenix PyRun Internals

The default for PYTHONIOENCODING in eGenix PyRun 3.4+ is "utf-
8:surrogateescape". This allows pyrun to work in most situations without
failing prints or weird encoding exceptions.

If you do have a different setup or would like exceptions for non-UTF-8 data
to be raised, you can set the PYTHONIOENCODING environment variable
to override this default.

It is even possible to have eGenix PyRun revert back to the locale scanning
behavior by setting the PYTHONIOENCODING variable to "" (empty string).

 User site configurations disabled

Since PyRun is normally used in isolated environments in which per-user
installations are not really wanted, we have disabled the flag
ENABLE_USER_SITE in site.py of the standard library to disable setup of the
user-site configurations.

This means that PyRun will not automatically search these user site-
packages directories and also not install into them. It also means that
sys.path search run faster and startup time is a little better as a result.

 Simulating user installations

Note that PyRun's site-packages directory is always set up relative to the
location of the PyRun binary, so using user site configurations should not
be needed.

If you want to simulate a user site installation with PyRun, you can create a
local installation of PyRun based on a system-wide one by either copying
the binary or simply creating a symbolic link in a user's subdirectory.

 Disabled check for Python build directory installations

PyRun will normally run outside any build directory installations. We
therefore save the startup costs for the special check to detect PyRun
running in the Python build directory.

 Special lib/site-python directory not included in default
sys.path

The site.py setup module checks for the availability of a lib/site-python
directory and adds this to sys.path if found. Since this directory is hardly
ever used and very uncommon for the isolated run-time environments for
which PyRun is intended, we have disabled this addition.

15

eGenix PyRun - One file Python runtime

2.2.2 Additional features compared to Python

 Disabling HTTPS certificate verification

Python 2.7.9 and 3.4+ introduced many changes to the SSL support of
Python. The Python 3.4 ssl module was backported to Python 2.7 in 2.7.9
and the default HTTPS certificate verification checks enabled per default
(see PEP 476)

Even though this results in making Python 2.7 more secure, it also means
that that Python 2.7 now needs access to a reliable and up-to-date trust
store which has the trusted CA root certificates. HTTPS requests to
websites or servers which don't provide certificates listed in those CA root
certificates will be rejected, unless the application code explicitly permits
such connections.

This will in many cases result in Python not accepting CA Cert certificates
or self-signed certificates anymore, which are often used in test setups or
by embedded systems.

eGenix PyRun provides a way to disable these checks using an environment
variable PYRUN_HTTPSVERIFY:

PYRUN_HTTPSVERIFY

When set to 0, PyRun will use the unverified SSL context for HTTPS
connections per default, just like Python 2.7.8 and earlier did.

Setting this variable to 1 will force the default to also verify the HTTPS
certificates.

Note: Future PyRun versions may adopt a possible new Python
environment variable to do the same.
See http://bugs.python.org/issue23857

2.2.3 Compatibility fixes applied to Python

In order to get some things to work in PyRun, we had to apply a few
compatibility fixes to the Python distributions:

 Frozen modules always have a __file__ attribute

In standard Python 2, the attribute is always set to "<frozen>". In standard
Python 3, the attribute does not exist at all.

16

https://www.python.org/dev/peps/pep-0476/
http://bugs.python.org/issue23857

2. eGenix PyRun Internals

This poses many problems to software relying on this attribute for reporting
and debugging purposes (e.g. to show the location of an error) or produce
coverage reports.

Since it's impossible to fix all this third party software, we chose to alwas
add the attribute to frozen modules. The attribute is set to
"<pyrun>/package/module.py" for all modules frozen into pyrun. This
allows most uses of the attribute to work without problems.

Some modules also use this attribute to locate external resources relative to
the module location. Since the attribute does not point to an existing path,
this will fail, so special work-arounds have to put in place for such software.

On the positive side, several such modules do take the situation into
account that the path does not exist and fall back to other solutions.

 Python system configuration included in pyrun_config.py

Since the build time information is normally read from the Python
installation files, we had to find a way to make this available without going
to the file system.

The trick was to use a generated module pyrun_config.py which has the
Python config information and can also patch it at runtime to accommodate
for the relocation feature of pyrun.

Note: Python 3 and later versions of Python 2.7 adopted this trick for
sysconfig as well.

 Integrated lib2to3 grammar files

The lib2to3 package comes with its own pgen2 parser. This parser uses a
special set of grammar files for Python's grammar which are embedded into
the package.

Since we cannot ship those files in the file system, we chose to stored the
grammar pickles in a pyrun_grammar.py helper module and patched the
package to use these pickles instead.

This allows lib2to3 to work without having to read the grammar files and
makes on-the-fly conversions during installation possible. An important
example of a package which uses this technique for Python 3 support is
setuptools.

17

eGenix PyRun - One file Python runtime

 Added list of available lib2to3 fixes to config

The lib2to3 package scans its own fixes/ directory for available fix modules.
In a frozen package this doesn't work, so we preprocessed the list, put it
into the pyrun_config.py module and patched lib2to3 to load it from there.

 Bug fixes to Python stdlib modules

While porting eGenix PyRun to Python 3.4 we found a couple of bugs in
stdlib modules which we patch in pyrun for the supported Python versions
and also reported upstream. Please see the change log on the eGenix
product web page for details.

 Statically linked standard library modules

In order to have the standard library extensions linked into the pyrun binary
instead of having them built as separate module, eGenix PyRun defines
additional entries for them in the Modules/Setup file.

Several modules are documented there, but not all of them. We extracted
the relevant information from the Python setup.py file and added it
manually to the Modules/Setup file for each supported Python version.

Since the Modules/Setup process is not nearly as flexible as the setup.py
process, configuration of the modules is sometimes very complicated. For
this reason we have punted on a few packages such as the ctypes package
and instead added them to the distributed binaries as separately installable
dynamic shared modules.

Note that it is possible to customize these Module/Setup files further in
case you would like to add other third party extensions to the pyrun binary.

2.2.4 Standard library modules not linked into PyRun

We have deliberately excluded a number of standard library modules that
are either to complicated to build, have license issues or are not needed
often enough in our use cases to warrant including in eGenix PyRun:

• *dbm modules

• crypt

• readline

• parser

18

http://www.egenix.com/products/python/PyRun/
http://www.egenix.com/products/python/PyRun/

2. eGenix PyRun Internals

• tkinter

• _multiprocessing

• all test packages and sub-packages

• ctypes

• nis

• audio modules

• _decimal (in Python 3)

The modules are still built (if the needed development files are found on
the build system) and packaged in the eGenix PyRun distribution files, so
you can use them, if you need to.

However, they are not statically linked into the PyRun executable, so when
moving this file around, you have to make sure that the relative directory
structure expected by PyRun (see 1.3.4 eGenix PyRun Directory Structure)
makes it possible to find those shared modules.

2.2.5 Include files not included in PyRun executable

For obvious reasons, we cannot include the Python include header files in
the PyRun executable, since the compiler/preprocessor will have to find
them in order to use them.

We do include the include files in the distribution packages and install-
pyrun will also install them, so it's possible to compile Python C extensions
if you use one of those distribution forms.

Compiling C extensions is not possible without the include header files, so
the single-file PyRun runtime executable is not enough to compile Python C
extensions.

2.2.6 Some things that don't work

There are a couple of tricks which Python modules sometimes play, which
don't work with frozen modules.

19

eGenix PyRun - One file Python runtime

 File access to resources in packages

Some standard library modules/packages come with non-Python resource
files such as binary .exe stubs or data files. Since freeze.py will only find
Python modules, these files are not included in the frozen PyRun
executable and since the frozen modules/packages don't live in the file
system, access to such resource files is not possible via the
module/package path.

Examples of such modules/packages:

• idellib

• distutils' bdist_wininst (the rest of distutils works fine)

• pkgutil on frozen packages (it works on frozen modules in
Python 2.7)

• several test modules/packages (not included anyway)

For the lib2to3 package, which also needs external files, we have patched
the package and included the necessary grammar files in the pyrun binary,
since it is used by several Python packages during installation on Python 3.

 Running frozen packages with -m

The pkgutil module which is needed to implement the -m option in
Python only has limited support for frozen modules in Python 2.7 and 3.4.
It has no support for frozen packages. As a result, running pyrun2.7 -m
timeit works, but e.g. pyrun2.7 -m lib2to3 --help doesn't.

 Python test suite issues

Running the Python test suite shows some strange issues which we have
not yet tracked down:

• Some test modules hang when run with regrtest.py, e.g.
test_docxmlrpc

• Test modules cause strange errors (mostly encoding errors) when
run with regrtest.py. Running the test modules directly doesn't
show these errors. Some preliminary investigation suggests that
these issues could be caused by regrtest.py modifying the
module __path__ entries.

20

2. eGenix PyRun Internals

 Not all Python command line options available

Because eGenix PyRun has to emulate the command line options in Python,
it is difficult to emulate some Python command line option which take
effect in the very early stages of the interpreter startup phase.

For some options like e.g. -d (debug level) and -O (optimization level), we
have added helpers/patches to Python to make it possible adjusting them
from Python.

Fortunately, most of the more exotic options are not used in production
runtime environments for which eGenix PyRun is designed.

21

eGenix PyRun - One file Python runtime

3. Examples of Use
Here's a short session installing setuptools, pip and our egenix-mx-base
package in an eGenix PyRun installation.

Please note that installing eGenix PyRun is much easier using the
install-pyrun bash script we provide, which automates the following
steps. See 1.3.2 Quick install using install-pyrun for instructions on how
to obtain and use this script.

First, we install a PyRun version for 32-bit Linux:

mkdir tmp
cd tmp
wget http://downloads.egenix.com/python/egenix-pyrun-2.0.0-
py2.7_ucs2.linux-i686.tgz
tar xvfz egenix-pyrun-2.0.0-py2.7_ucs2.linux-i686.tgz

Now we have a ready to use Python runtime in tmp/, using the default
eGenix PyRun directory layout, including some optional extra shared
libraries and the include files needed for compiling Python C extensions.

Now, we install setuptools into this runtime:

wget
http://pypi.python.org/packages/source/s/setuptools/setuptools-
2.1.tar.gz
cd setuptools-2.1
../bin/pyrun2.7 setup.py install
cd ..
rm -rf setuptools-2.1

Installing pip is just as easy:

wget http://pypi.python.org/packages/source/p/pip/pip-1.4.1.tar.gz
cd pip-1.4.1
../bin/pyrun2.7 setup.py install
cd ..
rm -rf pip-1.4.1

You can then install other Python packages using the usual installation
methods:

bin/pip install egenix-mx-base

and the packages are available to eGenix PyRun just as they would in a
regular Python installation:

$ bin/pyrun2.7
eGenix PyRun 2.7.6 (release 2.0.0, default, Jun 13 2014, 20:12:35)
[GCC 4.5.0 20100604 [gcc-4_5-branch revision 160292]]
Thank you for using eGenix PyRun. Type "help" or "license" for
details.

>>> import mx.DateTime

22

http://downloads.egenix.com/python/egenix-pyrun-2.0.0-py2.7_ucs2.linux-i686.tgz
http://downloads.egenix.com/python/egenix-pyrun-2.0.0-py2.7_ucs2.linux-i686.tgz
http://pypi.python.org/packages/source/s/setuptools/setuptools-2.1.tar.gz
http://pypi.python.org/packages/source/s/setuptools/setuptools-2.1.tar.gz
http://pypi.python.org/packages/source/p/pip/pip-1.4.1.tar.gz

3. Examples of Use

>>> mx.DateTime.now()
<mx.DateTime.DateTime object for '2013-06-13 20:26:30.62' at
7f1845a6a300>
>>>

eGenix PyRun will just as well install other packages such as Django, Trac,
Numpy, Cython, etc.

We've tried to make PyRun as compatible with existing packages as
possible, so everything should mostly work out of the box for you.

3.1 eGenix PyRun Command Line Options

These are eGenix PyRun's command line options. They are shown if you
start the PyRun executable with option -h:

$ bin/ /pyrun3.4 -h
Usage: pyrun [pyrunoptions] <script> [parameters]

Version: 3.4.3 (release 2.1.0, default, May 8 2015, 21:43:45)
[GCC 4.5.1 20101208 [gcc-4_5-branch revision 167585]]

Available pyrun options:

-b: run the given <script> file as bytecode
-c: compile and run <script> directly as Python code
-d: enable debug mode (-dd for level 2)
-h: show this help text
-i: enable interactive mode
-m: import and run a module <script> available on PYTHONPATH
-s: ignore user site; PyRun always ignores user site configs
-u: open stdout/stderr in unbuffered mode
-v: run in verbose mode (-vv for level 2)
-B: don't write byte code files
-E: ignore environment variables (only PYTHONPATH)
-O: run in optimized mode (-OO also removes doc-strings)
-R: not implemented; use PYTHONHASHSEED instead
-S: skip running site.main() and disable support for .pth files
-V: print the pyrun version and exit
-3: not implemented; only for compatibility with Python

Most Python environment variables are supported.

Without options, the given <script> file is loaded and run.
Parameters are passed to the script via sys.argv as normal.

The exact output is subject to changes between eGenix PyRun versions.

The meaning of most options is similar to the Python interpreter command
line options of the same name.

23

eGenix PyRun - One file Python runtime

Note that not all options are available, since it is difficult to emulate them in
pure Python. Even some of the above options were only possible using
patches to Python, e.g. the -d and -O options.

 Available options

-b <script>

Run the given <script> file as bytecode.

-c <script>

Compile and run <script> directly as Python code.

-d

Enable debug mode. Use -dd for level 2. This generates more debug
output to stderr when PyRun starts and also sets Python's debug flag
accordingly.

-h

Show the help text.

-i

Enable interactive mode. PyRun will enter interactive mode after running
the script when this option is used.

-m <script>

Import and run a module <script> available on PYTHONPATH. The
semantics are the same as those of Python itself.

-s

Ignore user site configurations. Since PyRun always ignores user site
configurations, this flag has no effect.

-u

Open stdout/stderr in unbuffered mode. Note that PyRun can only
emulate this by reopening sys.stdin and sys.stdout in unbuffered mode.

-v

Run PyRun in verbose mode. Use -vv for level 2. The Python verbose
flag is set accordingly.

-B

Tells PyRun to not write byte code files for compiled files (i.e. .pyc or
.pyo files and creating __pycache__ directories for Python 3.4+).

24

3. Examples of Use

-E

Ignore environment variables. PyRun can only apply this for the
PYTHONPATH variable, since other variables will already been read
during Python startup.

-O

Run in optimized mode. -OO also removes doc-strings.

-R

Randomize the string hash function. Since this cannot be implemented
in PyRun, it stops with an error. Use PYTHONHASHSEED instead.

-S

Skip running site.main() and disable support for .pth files.

-V

Print the PyRun version and exit.

-3

Not implemented. This flag is ignored to stay compatible with Python.

3.2 Debugging eGenix PyRun Installations

eGenix PyRun supports the Python -v and -d command line switches to give
you extra information about how processing is done. Both switches enable
additional output from eGenix PyRun as well as Python itself, since the
command line switches are passed to Python.

Please note however that these switches are enabled in Python by the
eGenix PyRun command line emulation which is written in Python. As a
result, they are not in effect in the early setup stages of PyRun startup and
don't include the early startup time information available in Python itself.

3.2.1 More information about PyRun paths and settings

If you need to debug PyRun installations, you can use -dd to have PyRun
display paths and setting variables at startup time. Here's an example
output:

$ bin/pyrun2.7 -dd
PyRun Debug Information

25

eGenix PyRun - One file Python runtime

Name and version
pyrun_name = 'pyrun'
pyrun_version = '2.7.6'
pyrun_libversion = '2.7'
pyrun_release = '2.0.0'
pyrun_build = '(release 2.0.0, default, Jun 13 2014, 21:47:11)
\n[GCC 4.5.1 20101208 [gcc-4_5-branch revision 167585]]'

Files and directories
pyrun_executable = '/tmp/pyrun2/bin/pyrun2.7'
pyrun_dir = '/tmp/pyrun2/bin'
pyrun_binary = 'pyrun2.7'
pyrun_prefix = '/tmp/pyrun2'
pyrun_bindir = 'bin'

Options
pyrun_verbose = 0
pyrun_debug = 2
pyrun_as_module = False
pyrun_as_string = False
pyrun_bytecode = False
pyrun_ignore_environment = False
pyrun_ignore_pth_files = False
pyrun_interactive = False
pyrun_unbuffered = False
pyrun_optimized = 0

pyrun: Setting up sys.path
pyrun: sys.path before adjusting it (compile time version):
pyrun: /tmp/pyrun2/bin
pyrun: sys.path after adjusting it (before cleanup):
pyrun: /tmp/pyrun2/lib/python2.7/site-packages/setuptools-2.1-
py2.7.egg
pyrun: /tmp/pyrun2/lib/python2.7/site-packages/pip-1.4.1-
py2.7.egg
pyrun: /tmp/pyrun2
pyrun: /tmp/pyrun2/lib/python2.7
pyrun: /tmp/pyrun2/lib/python2.7/lib-dynload
pyrun: /tmp/pyrun2/lib/python2.7/site-packages
pyrun: sys.path final version:
pyrun: /tmp/pyrun2/lib/python2.7/site-packages/setuptools-2.1-
py2.7.egg
pyrun: /tmp/pyrun2/lib/python2.7/site-packages/pip-1.4.1-
py2.7.egg
pyrun: /tmp/pyrun2
pyrun: /tmp/pyrun2/lib/python2.7
pyrun: /tmp/pyrun2/lib/python2.7/lib-dynload
pyrun: /tmp/pyrun2/lib/python2.7/site-packages
pyrun: Importing site.py
pyrun: sys.path before importing site:
pyrun: /tmp/pyrun2/lib/python2.7/site-packages/setuptools-2.1-
py2.7.egg
pyrun: /tmp/pyrun2/lib/python2.7/site-packages/pip-1.4.1-
py2.7.egg
pyrun: /tmp/pyrun2
pyrun: /tmp/pyrun2/lib/python2.7
pyrun: /tmp/pyrun2/lib/python2.7/lib-dynload
pyrun: /tmp/pyrun2/lib/python2.7/site-packages
pyrun: sys.path after importing site:
pyrun: /tmp/pyrun2/lib/python2.7/site-packages/setuptools-2.1-
py2.7.egg
pyrun: /tmp/pyrun2/lib/python2.7/site-packages/pip-1.4.1-
py2.7.egg

26

3. Examples of Use

pyrun: /tmp/pyrun2
pyrun: /tmp/pyrun2/lib/python2.7
pyrun: /tmp/pyrun2/lib/python2.7/lib-dynload
pyrun: /tmp/pyrun2/lib/python2.7/site-packages
eGenix PyRun 2.7.6 (release 2.0.0, default, Jun 13 2014, 21:47:11)
[GCC 4.5.1 20101208 [gcc-4_5-branch revision 167585]]
Thank you for using eGenix PyRun. Type "help" or "license" for
details.

>>>

The -d and -dd switches will also enable the Python debug settings, so you
can use this to get additional debug information from Python or extensions
compiled with debug support.

3.2.2 Debugging imports and import searches

If you need to debug imports and get more information about how eGenix
PyRun executes the scripts, the -v command line switch is useful. It tells
PyRun to output additional useful information to stderr and also enable the
Python verbose flag which results in Python writing import searches and
GC cleanup details to stderr.

test-2.7-ucs2/bin> ./pyrun -v
import site # frozen
import traceback # frozen
import sysconfig # frozen
import re # frozen
import sre_compile # frozen
import _sre # builtin
import sre_parse # frozen
import sre_constants # frozen
import _locale # builtin
zipimport: found 135 names in
/home/lemburg/egenix/projects/PyRun/test-2.7-
ucs2/lib/python2.7/site-packages/setuptools-2.1-py2.7.egg
import code # frozen
import codeop # frozen
import __future__ # frozen
dlopen("/home/lemburg/egenix/projects/PyRun/test-2.7-
ucs2/lib/python2.7/lib-dynload/readline.so", 2);
import readline # dynamically loaded from
/home/lemburg/egenix/projects/PyRun/test-2.7-
ucs2/lib/python2.7/lib-dynload/readline.so
eGenix PyRun 2.7.9 (release 2.1.0, default, Apr 28 2015, 12:55:41)
[GCC 4.5.1 20101208 [gcc-4_5-branch revision 167585]]
Thank you for using eGenix PyRun. Type "help" or "license" for
details.

>>>

If you additionally want to know where PyRun searches for imports,
increase verbosity by using the -vv flag:

test-2.7-ucs2/bin> ./pyrun -vv
import site # frozen

27

eGenix PyRun - One file Python runtime

import traceback # frozen
import sysconfig # frozen
import re # frozen
import sre_compile # frozen
import _sre # builtin
import sre_parse # frozen
import sre_constants # frozen
import _locale # builtin
zipimport: found 135 names in
/home/lemburg/egenix/projects/PyRun/test-2.7-
ucs2/lib/python2.7/site-packages/setuptools-2.1-py2.7.egg
trying /home/lemburg/egenix/projects/PyRun/test-2.7-
ucs2/lib/python2.7/site-packages/pip-1.4.1-
py2.7.egg/sitecustomize.so
trying /home/lemburg/egenix/projects/PyRun/test-2.7-
ucs2/lib/python2.7/site-packages/pip-1.4.1-
py2.7.egg/sitecustomizemodule.so
trying /home/lemburg/egenix/projects/PyRun/test-2.7-
ucs2/lib/python2.7/site-packages/pip-1.4.1-
py2.7.egg/sitecustomize.py
trying /home/lemburg/egenix/projects/PyRun/test-2.7-
ucs2/lib/python2.7/site-packages/pip-1.4.1-
py2.7.egg/sitecustomize.pyc
…
import readline # dynamically loaded from
/home/lemburg/egenix/projects/PyRun/test-2.7-
ucs2/lib/python2.7/lib-dynload/readline.so
eGenix PyRun 2.7.9 (release 2.1.0, default, Apr 28 2015, 12:55:41)
[GCC 4.5.1 20101208 [gcc-4_5-branch revision 167585]]
Thank you for using eGenix PyRun. Type "help" or "license" for
details.

>>>

28

4. Support

4. Support
eGenix.com is providing commercial support for this package. If you are
interested in receiving information about this service please see the
eGenix.com Support Conditions.

29

http://www.egenix.com/files/python/eGenix-mx-Extensions.html

eGenix PyRun - One file Python runtime

5. Copyright & License
© 2008-2016, Copyright by eGenix.com Software GmbH, Langenfeld,
Germany; All Rights Reserved. mailto: info@egenix.com

This software is covered by the eGenix.com Public License Agreement,
which is included in the following section. The text of the license is also
included as file "LICENSE" in the package's main directory.

Since eGenix PyRun also pulls in Python, the respective Python license also
applies to the resulting pyrun binary. The Python license is included as file
"LICENSE.Python" in the package's main directory as well as the eGenix
Third-Party License document.

In simple words, you are free to use the software without paying fees or
royalties as long as you give proper attribution and keep the license
documents together with the software. Please see the license document for
details and consult a lawyer if you have legal questions.

By downloading, copying, installing or otherwise using the software, you
agree to be bound by the terms and conditions of the following eGenix.com
Public License Agreement.

30

mailto:info@egenix.com
http://docs.python.org/license.html

5. Copyright & License

EGENIX.COM PUBLIC LICENSE AGREEMENT

Version 1.1.0

This license agreement is based on the Python CNRI License Agreement, a
widely accepted open-source license.

1. Introduction

This "License Agreement" is between eGenix.com Software, Skills and
Services GmbH ("eGenix.com"), having an office at Pastor-Loeh-Str. 48, D-
40764 Langenfeld, Germany, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. License

Subject to the terms and conditions of this eGenix.com Public License
Agreement, eGenix.com hereby grants Licensee a non-exclusive, royalty-
free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the
Software alone or in any derivative version, provided, however, that the
eGenix.com Public License Agreement is retained in the Software, or in any
derivative version of the Software prepared by Licensee.

3. NO WARRANTY

eGenix.com is making the Software available to Licensee on an "AS IS"
basis. SUBJECT TO ANY STATUTORY WARRANTIES WHICH CAN NOT BE
EXCLUDED, EGENIX.COM MAKES NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, EGENIX.COM MAKES NO AND DISCLAIMS ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE
WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. LIMITATION OF LIABILITY

EGENIX.COM SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS
OF THE SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR
CONSEQUENTIAL DAMAGES OR LOSS (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER
PECUNIARY LOSS) AS A RESULT OF USING, MODIFYING OR

31

http://www.opensource.org/licenses/pythonpl.php

eGenix PyRun - One file Python runtime

DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE
ABOVE EXCLUSION OR LIMITATION MAY NOT APPLY TO LICENSEE.

5. Termination

This License Agreement will automatically terminate upon a material breach
of its terms and conditions.

6. Third Party Rights

Any software or documentation in source or binary form provided along
with the Software that is associated with a separate license agreement is
licensed to Licensee under the terms of that license agreement. This License
Agreement does not apply to those portions of the Software. Copies of the
third party licenses are included in the Software Distribution.

7. General

Nothing in this License Agreement affects any statutory rights of consumers
that cannot be waived or limited by contract.

Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between eGenix.com
and Licensee.

If any provision of this License Agreement shall be unlawful, void, or for any
reason unenforceable, such provision shall be modified to the extent
necessary to render it enforceable without losing its intent, or, if no such
modification is possible, be severed from this License Agreement and shall
not affect the validity and enforceability of the remaining provisions of this
License Agreement.

This License Agreement shall be governed by and interpreted in all respects
by the law of Germany, excluding conflict of law provisions. It shall not be
governed by the United Nations Convention on Contracts for International
Sale of Goods.

This License Agreement does not grant permission to use eGenix.com
trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party.

32

5. Copyright & License

33

The controlling language of this License Agreement is English. If Licensee
has received a translation into another language, it has been provided for
Licensee's convenience only.

8. Agreement

By downloading, copying, installing or otherwise using the Software,
Licensee agrees to be bound by the terms and conditions of this License
Agreement.

For question regarding this License Agreement, please write to:

eGenix.com Software, Skills and Services GmbH

Pastor-Loeh-Str. 48

D-40764 Langenfeld

Germany

	Introduction
	Features
	System Requirements
	Source Installations
	Binary Installations

	Installation
	Windows Installer
	Quick install using install-pyrun
	Using install-pyrun
	install-pyrun is secure
	Setup a complete Python environment in one go using -r requirements.txt
	Manual PyRun installation

	Prebuilt Binary Distribution
	eGenix PyRun Directory Structure
	Shipping custom external libraries with eGenix PyRun
	Default rpath
	Override rpath at runtime
	Change or disable rpath setting

	Building you own eGenix PyRun binary
	Testing
	Customization Options

	eGenix PyRun Internals
	PyRun Building Parts
	The PyRun Makefile
	Adding Python modules/packages to eGenix PyRun
	Removing Python modules/packages from eGenix PyRun

	Differences compared to Python
	Changes compared to standard Python
	Default PYTHONIOENCODING in Python 3
	User site configurations disabled
	Disabled check for Python build directory installations
	Special lib/site-python directory not included in default sys.path

	Additional features compared to Python
	Disabling HTTPS certificate verification

	Compatibility fixes applied to Python
	Frozen modules always have a __file__ attribute
	Python system configuration included in pyrun_config.py
	Integrated lib2to3 grammar files
	Added list of available lib2to3 fixes to config
	Bug fixes to Python stdlib modules
	Statically linked standard library modules

	Standard library modules not linked into PyRun
	Include files not included in PyRun executable
	Some things that don't work
	File access to resources in packages
	Running frozen packages with -m
	Python test suite issues
	Not all Python command line options available

	Examples of Use
	eGenix PyRun Command Line Options
	
	Available options

	Debugging eGenix PyRun Installations
	More information about PyRun paths and settings
	Debugging imports and import searches

	Support
	Copyright & License

