
ODBC Database Interface
for the Django Web Framework

VVVersion 1.2 eerrssiioonn 11..22

mmxxOODDBBCC
DDjjaannggoo

DDaattaabbaassee
EEnnggiinnee

Copyright  2007-2013 by eGenix.com GmbH, Langenfeld

All rights reserved. No part of this work may be reproduced or used in a any form or
by any means without written permission of the publisher.

All product names and logos are trademarks of their respective owners.

The product names "mxBeeBase", "mxCGIPython", "mxCounter", "mxCrypto",
"mxDateTime", "mxHTMLTools", "mxIP", "mxLicenseManager", "mxLog", "mxNumber",
"mxODBC", "mxODBC Connect", "mxODBC Django Database Engine",
"mxObjectStore", "mxProxy", "mxQueue", "mxStack", "mxTextTools", "mxTidy",
"mxTools", "mxUID", "mxURL", "mxXMLTools", "eGenix Application Server",
"PythonHTML", "eGenix" and "eGenix.com" and corresponding logos are trademarks
or registered trademarks of eGenix.com GmbH, Langenfeld

Printed in Germany.

Contents

Contents

1. Introduction .. 1
1.1 Features... 1

MS SQL Server Features .. 2
Direct mxODBC Interface to other Databases 3

1.2 Django ORM Integration ... 3
1.3 Supported Django Versions ... 4
1.4 Requirements .. 4

Windows... 5
Unix .. 5
Mac OS X .. 6

2. Installation... 7
2.1 Windows Installation ... 8

2.1.1 Installation managed by Windows... 8
2.1.2 Installation managed by Python... 8

2.2 Unix / Mac OS X Installation .. 8
2.3 Download the Software ... 9

2.3.1 Automatic download ... 9
easy_install and zc.buildout (setuptools/distribute-based) 9
pip... 10

2.3.2 Manual download ... 10
Choosing the right file to download .. 10

2.4 Installation using zc.buildout ... 12
2.4.1 Before You Start .. 12

Upgrading ... 12
License Files .. 12

mxODBC for Django - ODBC Interface for the Django Web Framework

2.4.2 Step-by-step Installation Guide.. 13
Step 1 .. 13
Step 2 .. 14
Step 3 .. 15
Step 4 .. 15

2.5 Installation using easy_install ... 16
2.5.1 Before You Start... 16

Upgrading ... 16
License Files .. 16

2.5.2 Step-by-step Installation Guide.. 17
Step 1 .. 17
Step 2 .. 17
Step 3 .. 18

2.6 Installation using pip.. 18
2.6.1 Before You Start... 19

Upgrading ... 19
License Files .. 19

2.6.2 Step-by-step Installation Guide.. 20
Step 1 .. 20
Step 2 .. 20
Step 3 .. 21
Step 4 .. 21

2.6.3 Uninstall .. 21
2.7 Installation using Windows MSI Installer ... 22

2.7.1 Before You Start... 22
Upgrading ... 22
License Files .. 22

2.7.2 Step-by-step Installation Guide.. 23
Step 1 .. 23
Step 2 .. 24
Step 3 .. 24
Step 4 .. 24

Contents

2.7.3 Uninstall.. 24

3. Configuration ...26
3.1 ODBC Data Source Configuration ... 26

3.1.1 General Notes ... 26
Connection Pooling by the ODBC Manager 26

3.1.2 Windows Platform... 27
Platform Default ODBC Manager .. 27

3.1.3 Unix Platform .. 27
Platform Default ODBC Manager .. 28

3.1.4 Mac OS X Platform.. 28
Platform Default ODBC Manager .. 29

3.2 ODBC Driver/Manager Troubleshooting.. 29
3.2.1 Windows ODBC Manager... 29
3.2.2 Unix ODBC Managers iODBC, unixODBC and DataDirect 30
3.2.3 Microsoft Access ODBC Driver... 30
3.2.4 IBM DB2 ODBC Driver ... 31
3.2.5 SAP DB ODBC Driver ... 31
3.2.6 FreeTDS ODBC Driver (access MS SQL Server from Linux)....... 31
3.2.7 MS SQL Server Native Client for Linux 32
3.2.8 PostgreSQL ODBC Driver ... 32
3.2.9 Other ODBC Drivers and Manager Setups................................ 33

4. Setting up your Django application ...34
4.1 Configuring database access.. 35

4.1.1 Database settings .. 35
4.1.2 Database backend options .. 37

5. Using the mxODBC Django Database Engine..42
5.1 Using the Django ORM with mxODBC ... 42

5.1.1 MS SQL Server as database backend for the Django ORM 42
Database Permissions ... 43
Date/Time Fields ... 43
Limitations .. 43

mxODBC for Django - ODBC Interface for the Django Web Framework

5.1.2 Working with databases which are not supported by the ORM . 43
5.2 Direct mxODBC Database Interfacing ... 44

5.2.1 mxODBC Python API... 44
5.2.2 Importing mxODBC into your Django application 44
5.2.3 Example of using the mxODBC Database Interface in Django ... 45
5.2.4 Transaction Management .. 46

Default transaction mode is manual commit 46
Enabling Auto-Commit .. 47

6. Additional information ... 48
6.1 Known problems and limitations of the MS SQL Server subpackage.... 48

6.1.1 mxODBC Django Database Engine currently only supports
Microsoft SQL Server... 48
6.1.2 Django timezone support doesn't work well with MS SQL Server49

Avoid using USE_TZ .. 49
Avoid date/time string literals and implicit datetime to string
conversion... 49

6.1.3 Limited MS SQL Server datetime precision 49
Unwanted Rounding.. 49
Avoid mixed-date/time field type comparisons/filtering.............. 50

6.1.4 Min() / Max() and DateField() / TimeField()................................ 50
6.1.5 Character encoding related problems .. 50
6.1.6 Deferred constraint checking is not supported on MS SQL........ 51

Possible work around .. 52
6.1.7 Limited support for regular expressions..................................... 52
6.1.8 Data types nvarchar() and ntext cannot be compared................ 52

Work around ... 52
6.1.9 Aggregate function support conflicts with other database
backends ... 53
6.1.10 Database cache support conflicts with other database backends53

6.2 Tips and tricks ... 54
6.2.1 How do I determine the correct collation values?...................... 54
6.2.2 How do I implement full regular expression search? 54

Contents

6.3 Troubleshooting .. 55
6.3.1 Django does not find the database backend 55
6.3.2 I'm getting an error about missing mxODBC license or the license
has expired.. 55
6.3.3 Django cannot connect to the database..................................... 55

7. Support ..57

8. Copyright & License ...58

1. Introduction

1. Introduction

mxODBC has proven to be the most stable and versatile ODBC interface
available for Python. It has been in production use since 1997 and is
actively maintained by eGenix.com to meet the requirements of modern
database applications which our customers have built on top of mxODBC.

Django is a high-level Python Web framework that encourages rapid
development with a clean and pragmatic design.

mxODBC Django Database Engine is a database adapter specifically
designed for Django which allows interfacing with database servers
providing an ODBC interface, with direct Django Object Relational Mapper
(ORM) integration. We currently support the ORM integration for:

• Microsoft SQL Server:
Microsoft SQL Server versions 2005, 2008 and 2012

ORM support for other popular database backends will be added in
upcoming releases.

Databases for which we currently do not provide ORM support can be used
by directly building on top of the Python DB-API 2.0 compatible mxODBC
Database API. Please see section 5.2 Direct mxODBC Database Interfacing
for details.

This manual explains how to setup mxODBC Django Database Engine for
your Django web application. It is written as a technical manual, so some
knowledge of Python and the basic configuration of Django is needed.

1.1 Features

The mxODBC Django Database Engine provides the following features:

• Fully integrated with the Django ORM: No need to learn a new API
- simply continue to use the known Django ORM interface.

• Compatible with all current Django versions: The mxODBC Django
Database Engine supports Django 1.4 and 1.5.

1

http://www.egenix.com/products/python/mxODBC/
http://www.egenix.com/
http://www.djangoproject.com/
http://www.egenix.com/products/django/mxODBCDjango/

mxODBC for Django - ODBC Interface for the Django Web Framework

• Compatible with all recommended Python versions: The database
engine supports Python 2.6 and 2.7; both as UCS2 (narrow) and
UCS4 (wide) Unicode variant on Unix platforms.

• Full Unicode Support: The database engine can communicate with
the database using native Unicode and 8-bit encodings such as
UTF-8 or CP1252.

• Full 64-bit Support: The underlying mxODBC 3.2 library fully
supports 64-bit platforms such as Mac OS X 10.6 (Snow Leopard)
and 64-bit Linux systems that use unixODBC, iODBC or
DataDirect ODBC managers.

• Cross-platform Connection Objects: The database engine will
automatically choose the right platform specific ODBC manager for
you.

• Per Connection Adjustable ODBC Manager Interface: mxODBC
supports many different ODBC managers. The mxODBC Django
Database Engine allows you to select the ODBC manager on a per-
connection basis.

• Per Connection Customization of Interface Parameters: The
database engines allows adjusting many different parameters to
adapt the engine to your specific database needs, should you have
special requirements.

 MS SQL Server Features

• MS SQL Server fully integrated into the Django ORM: Access MS
SQL Server through the Django ORM, just like any other Django
ORM database.

• MS SQL Server Regular Expression Emulation: Even though MS
SQL Server itself does not support regular expressions, the
mxODBC Django Database Engine provides an emulation for
simple regular expressions to simplify porting existing applications
to a SQL Server backend.

• MS SQL Server Aggregate Function Support: We provide a special
aggregate function implementation to have the Django ORM
support SQL Server aggregate functions.

• MS SQL Server Timestamp Support: SQL Server support
millisecond accuracy on timestamps. The database engine will take
care of applying the necessary rounding for the microsecond
precision Python timestamps in a seamless way.

2

1. Introduction

• Support for all popular SQL Server ODBC drivers: The mxODBC
Django Database Engine supports the MS SQL Server Native Client
on Windows, the MS SQL Server Native Client for Linux, as well as
the FreeTDS ODBC driver. Commercial drivers from well-known
driver vendors are also supported.

• Support for accessing SQL Server from Windows and Unix
platforms: On Windows and Linux you can use the SQL Server
Native Client, on other Unix platforms and Mac OS X, the FreeTDS
or commercial drivers can be used.

 Direct mxODBC Interface to other Databases

• Access IBM DB2, Sybase ASE, Oracle, Teradata, Netezza, etc.
directly through the proven mxODBC Database API: Import, query
and save data directly to the databases using a simple to use API
and all available database specific SQL dialects, capabilities and
features, including ones for which the Django ORM does not
provide support.

• Fully Python DB-API 2.0 compatible interface: mxODBC support
the Python DB-API 2.0, including many standard extensions and
the full set of ODBC catalog methods for database introspection.

• Full transaction control: When using the mxODBC Database API,
you get full control over the database connections, including
opening them on demand, in auto-commit mode, dynamically
scaling the number of connections per request, etc.

1.2 Django ORM Integration

The mxODBC Django Database Engine package provides ORM integration
subpackages for each database backend.

In version 1.2 of the mxODBC Django Database Engine we provide support
for Microsoft SQL Server 2005, 2008 and 2012 through the subpackage
mxodbc_django.ms_sql_server. For later versions of the product, we
plan to add subpackages for other database backends such as Sybase, IBM
DB2 and Oracle as well.

The mxODBC Django Database Engine can be used just like most other
database backends shipped with Django. We have added some additional
options and features that allow adjusting the engine to your specific needs,
but the defaults should work for most installations.

3

mxODBC for Django - ODBC Interface for the Django Web Framework

Configuring Django to use one of the available mxODBC Django Database
Engine ORM subpackages only requires changes to your application
specific settings.py file.

Note:
Some features of the Django ORM may not be supported on all the
database backends due to differences between the supported set of data
types and operators of the underlying database servers or database server
versions.

1.3 Supported Django Versions

The Django project is a quickly evolving web framework. eGenix generally
tries to keep up to date with the latest supported releases of Django, but
since new Django versions often introduce subtle differences in the internal
Django APIs that the mxODBC Django Database Engine has to interface to,
upwards compatibility is not always guaranteed.

Version 1.2 of the mxODBC Django Database Engine supports these
Django versions:

• Django 1.4

• Django 1.5

It may also work with older Django versions, as far back as Django 1.2, but
those versions are no longer supported by eGenix. Support for future
Django version depends on the way Django is developed. In the past,
changes to the Django APIs have often made it necessary to adapt the
mxODBC Django Database Engine to the new versions, so you can not
expect the package to be forward compatible.

1.4 Requirements

mxODBC Django Database Engine needs these environment on Windows,
Unix or Mac OS X for successful installation:

4

1. Introduction

 Windows

• All 32-bit Windows platforms starting with Windows 2000 are
supported. 64-bit versions Windows Vista x64 and later are
supported as well.

• Django 1.4 or 1.5 needs to be installed and working.

• Python 2.6 or 2.7 needs to be installed and working. You normally
have one of these Python versions already installed if you are using
Django 1.4 or later.

• The Windows version of the mxODBC Django Database Engine
uses the Windows ODBC manager as ODBC manager, so you have
to configure your ODBC data sources using its GUI interface which
is available through the system settings folder.

• You should setup at least one configured and running ODBC data
source for testing purposes.

 Unix

• SuSE, RedHat or Ubuntu Linux distributions, as well as FreeBSD,
for x86 and x86_64 processors are supported Unix platforms. We
can also provide ports and custom builds for other Unix platforms
such as IBM AIX or Oracle Solaris on request. Please write to
sales@egenix.com for details.

• Django 1.4 or 1.5 needs to be installed and working.

• Python 2.6 or 2.7 needs to be installed and working. You normally
have one of these Python versions already installed if you are using
Django 1.4 or later.

• On Linux and FreeBSD, the binary package includes support for the
unixODBC and iODBC ODBC managers. On Linux, the DataDirect
ODBC manager is also supported. You must have at least one of
these installed in order to be able to connect to ODBC data
sources. Please use the ODBC manager GUI interfaces to
configure the data sources. The Django Database Engine prefers
unixODBC over iODBC over DataDirect, if more than one ODBC
manager is installed.

• You should setup at least one configured and running ODBC data
source for testing purposes.

5

mailto:sales@egenix.com

mxODBC for Django - ODBC Interface for the Django Web Framework

 Mac OS X

• Mac OS X 10.4/10.5 Intel and PPC 32-bit and Mac OS X 10.6 Intel
64-bit are supported. Please note that we are phasing out support
for Mac OS X 10.4 and 10.5 as well as the 32-bit Intel version.

• Django 1.4 or 1.5 needs to be installed and working.

• Python 2.6 or 2.7 needs to be installed and working. You normally
have one of these Python versions already installed if you are using
Django 1.4 or later.

• Mac OS X uses a variant of iODBC as system ODBC manager. On
Mac OS X 10.4 and 10.5 this comes pre-installed with the system.
On Mac OS X 10.6 and later, the ODBC manager is available from
Apple as separate download. Alternatively, you can use the new
ODBC Manager which is maintained by Actual Technologies. Please
use the ODBC manager GUI interfaces to configure the data
sources.

• You should setup at least one configured and running ODBC data
source for testing purposes.

6

http://support.apple.com/kb/DL895
http://www.odbcmanager.net/
http://www.actualtech.com/

2. Installation

2. Installation

The mxODBC Django Database Engine package is distributed as a third
party add-on for the Django Web framework.

It comes with all components needed to enable ODBC driver access for
Django:

• egenix-mx-base, providing the base functionality

• egenix-mxodbc, providing the ODBC level interface

• Django-compatible ORM database engines for the supported
backends

The product does not include ODBC drivers for the database. You can get
these from your database vendor or one of the many third-party vendors
providing ODBC drivers for many combinations of platform and database
version. See the ODBC vendor list on SQLSummit.com for details.

The following sub-sections will guide you through the download and
installation process.

IMPORTANT NOTES:

You will have to install a valid mxODBC Django Database Engine license
in order to run your Django application with the backends provided by
mxODBC Django Database Engine.

Please do not install the eGenix packages egenix-mx-base or egenix-
mxodbc separately when using the mxODBC Django Database Engine
product. It already includes these packages. A separate installation is not
needed and will cause conflicts.

7

http://www.sqlsummit.com/ODBCVend.htm

mxODBC for Django - ODBC Interface for the Django Web Framework

2.1 Windows Installation

On Windows, you typically install Python using the Python MSI Installer,
which places the installation details into the Windows Registry and allows
the installation to be managed using the software installation manager built
into Windows.

2.1.1 Installation managed by Windows

If you have a setup like this and would like to install the mxODBC Django
Database Engine in the same way, please proceed as described in

• Section 2.7 Installation using Windows MSI Installer

2.1.2 Installation managed by Python

Alternatively to the Windows Installer-based installation, it is also possible
to install the mxODBC Django Database Engine using zc.builout,
setuptools/distribute/easy_install or pip. These installation mechanism are
not managed by the Windows software installation manager, so cannot be
uninstalled using the Windows manager. However, they offer ways of
automating the installation and uninstallation from within Python.

If you'd like to use one of the mentioned methods for installation, please
proceed as described in following sections:

• Section 2.4 Installation using zc.buildout

• Section 2.5 Installation using easy_install

• Section 2.6 Installation using pip

2.2 Unix / Mac OS X Installation

On Unix platforms such as Linux, FreeBSD, Mac OS X, you have to use
Python installation managers to install the mxODBC Django Database
Engine.

8

2. Installation

We support zc.builout, setuptools/distribute/easy_install or pip.

Depending on your preferred method, please proceed as described in
following sections:

• Section 2.4 Installation using zc.buildout

• Section 2.5 Installation using easy_install

• Section 2.6 Installation using pip

2.3 Download the Software

eGenix distributes the mxODBC Django Database Engine in form of .egg
and .prebuilt files. Both types of files are a Python binary distribution
format, which allows distribution of compiled Python packages without the
need for a compile step on the target machine.

While .egg files work well with setuptools/distribute based easy_install and
zc.buildout, the .prebuilt files are usable with the more modern pip
installer.

There are two ways to get the database engine installed in your Django
project: an automatic approach and a manual one.

2.3.1 Automatic download

The mxODBC Django Database Engine is normally distributed and installed
in form of Python egg archives which are built for automatic download and
made available through a special package index on the eGenix.com
website.

 easy_install and zc.buildout (setuptools/distribute-based)

A separate manual download is normally not needed, since easy_install and
zc.buildout installation and build tools will automatically find and download
the .egg software archives from the eGenix.com website as needed.

9

mxODBC for Django - ODBC Interface for the Django Web Framework

 pip

Please note that pip does not support automatically downloading .prebuilt
files. You have to use the manual download option, if you intend to use pip.

2.3.2 Manual download

If you do need to download the egg or prebuilt archives eGenix makes
available, e.g. because you want to use pip, your server doesn't have
Internet access, or is behind a firewall, please read on.

You can download the binary egg and prebuilt archives for your
combination of platform, Python version and Unicode variant from the
eGenix.com web-site at http://www.egenix.com/.

 Choosing the right file to download

Please make sure that you download the right version for your Django
installation. If you get import errors, notices of failed initialization or
Django hangs, you likely have the wrong product version installed.

These parameters make a difference:

 Installation Tool (easy_install/zc.buildout or pip)

Depending on which installation tool you will be using to install the
database engine in your Django project, you will have to download either
an .egg or a .prebuilt archive version:

• download .egg files if you are using easy_install and zc.buildout

• download .prebuilt files if you are using pip

• download .msi files if you are using the Windows Installer

 Platform (Windows, Linux, FreeBSD, Mac OS X)

All recent versions of these operating systems are supported. Just be sure to
download the correct archive for your platform.

10

http://www.egenix.com/

2. Installation

 Python Build Version (2.6, 2.7)

To check which Python version your Django installation is using, startup
the Python interpreter1 using the –V option:

bin/python –V

This will print out the Python version number.

 Python Build Architecture (32 bit or 64 bit)

On many platforms we support x86 32-bit and x86_64 64-bit versions of
Python.

To find out which version Django is using, run the following command:

bin/python -c "import struct; print struct.calcsize('P')*8,'bit'"

This will print out “32 bit” or “64 bit”.

 Unicode Variant (UCS2 or UCS4)

On Windows, Python is always compiled as UCS2 version, so you can skip
this section.

On Unix, Python can be built using two different Unicode variants: UCS2
and UCS4.

To find out which variant your Python version was compiled with, run the
following command (if you are running Django with a different Python
interpreter, please replace bin/python with the one you are using):

bin/python -c "print('UCS%s'%len(u'x'.encode('unicode-internal')))"

This will either print out “UCS2” or “UCS4”.

Most Django installation will be using the system's default Python
installation, either directly or via a virtualenv local installation.

On Linux and FreeBSD this usually means you have a UCS4 version of
Python.

1 Have a look at the ./bin/django-admin.py startup file in your Django directory to find
the path to the Python interpreter.

11

http://www.virtualenv.org/

mxODBC for Django - ODBC Interface for the Django Web Framework

2.4 Installation using zc.buildout

This section explains the installation of the mxODBC Django Database
Engine using a zc.buildout based approach. zc.buildout is a software
configuration and setup tool that allows for a programmatic, repeatable
approach to software deployment.

2.4.1 Before You Start

The binary installation archives and egg files include everything you need to
run the mxODBC Django Database Engine, including the necessary egenix-
mx-base and egenix-mxodbc packages for Django.

Please make sure that you do not have egenix-mx-base or egenix-mxodbc
installed separately, since the installation will not succeed in such a
setup.

If you have not installed them manually in your Python installation, also
make sure that you don't have any of these buildout recipes installed:
collective.recipe.mxodbc or collective.recipe.mxbase.

 Upgrading

zc.buildout will automatically upgrade your mxODBC Django Database
Engine to the latest release.

If you don't want this to happen, add an entry with the exact version
number to the [versions] section of the buildout.cfg or versions.cfg file,
e.g.

[versions]
egenix-mxodbc-django = 1.2.0

 License Files

In order to run the mxODBC Django Database Engine, you will need
license files from eGenix.com.

If you want to test the product before buying it, you can request evaluation
licenses via the eGenix.com web-site at http://www.egenix.com/.

When buying licenses from the eGenix.com online shop
(http://shop.egenix.com/), you will receive the license files immediately
after purchase.

12

http://www.buildout.org/
http://www.egenix.com/
http://shop.egenix.com/

2. Installation

In both cases, the license files are sent to the email address you specified
during the purchase process or from which you wrote the evaluation
license request in form of a ZIP license archive attached to the license email
– usually named licenses.zip.

The license archive licenses.zip contains one subdirectory per Django
Project license you bought. The directories are named after the license key
for each Django Project license. A typical license archive will have these
contents:

 2100-8789-0322-0926-2568-6429/mxodbc_django_license.py
 2100-8789-0322-0926-2568-6429/mxodbc_django_license.txt
 2100-8089-0312-0926-2668-6529/mxodbc_django_license.py
 2100-8089-0312-0926-2668-6529/mxodbc_django_license.txt

(in the above example, the license archive contains the files for two product
licenses).

In order to install the license files, please unzip the license archive to your
Django installation directory, i.e. the directory with the buildout.cfg file.
zc.buildout will need to find the files for proper operation.

The files will be copied to the right Django Project directory location via a
zc.buildout recipe where Django can find them, so you should not
remove these license directories.

2.4.2 Step-by-step Installation Guide

We assume that you have already installed Django and unzipped the
license files to the installation directory as explained in the previous
section.

 Step 1

Determine whether you are using a UCS2 or UCS4 build of Python.

Windows users always need the UCS2 version. Mac OS X users will most
likely also need the UCS2 version, since Python's default configuration is
to build a UCS2 interpreter. Linux users will likely need a UCS4 build.

To find out which variant your Python version was compiled with, run the
following command (if you are running Django with a different Python
interpreter, please replace bin/python with the one you are using):

bin/python -c "print('UCS%s'%len(u'x'.encode('unicode-internal')))"

This will either print out “UCS2” or “UCS4”.

13

mxODBC for Django - ODBC Interface for the Django Web Framework

 Step 2

We assume that you are using a buildout recipe similar to the djangorecipe
recipe, which has a [django] section for installing Django and the Django
project.

In your buildout.cfg file, please add/adapt the following content:

[buildout]
…

Add eGenix Index to the buildout setup

IMPORTANT: Use the URL
https://downloads.egenix.com/python/index/ucs2/
if your Python version is a UCS build. If you have a UCS4
build of Python, use the URL
https://downloads.egenix.com/python/index/ucs4/

find-links =
 …
 https://downloads.egenix.com/python/index/ucs2/

Add eGenix mxODBC Django Database Engine eggs

The new egenix-mxodbc-django-license part takes care of
automatically installing your license files in the instance.

eggs =
 …
 egenix-mxodbc-django

parts =
 …
 egenix-mxodbc-django-license

…

Install the Django Project licenses for egenix-mxodbc-django

This part copies the license files you extracted to the
project directory to the directory where your project's
settings.py module is located.

IMPORTANT: You need to replace ***license-serial*** with the
directory containing the mxodbc_django_license.py file for
your project.

[egenix-mxodbc-django-license]
recipe = collective.recipe.template
input = ***license-serial***/mxodbc_django_license.py
output =
 ${django:project}/${django:project}/mxodbc_django_license.py

Define versions of packages to be used

buildout will automatically use the latest version it finds
for building instances. This may not always be what you
want, so it's usually better to pin down the version you're
interested in.

[versions]
…

14

https://pypi.python.org/pypi/djangorecipe/
https://downloads.egenix.com/python/index/ucs2/
https://downloads.egenix.com/python/index/ucs4/

2. Installation

egenix-mxodbc-django = 1.2.0
collective.recipe.template = 1.9

In the above file, you have to make two adjustments:

• Adjust the URL used in the find-links directive to use either the
ucs2/ or the ucs4/ version of the eGenix PyPI-style distribution
index.

• Adjust the egenix-mxodbc-django version to the one that you
would like to use.

• Replace the ***license-serial***/ path component with the license
directory containing the license for the instance you are
configuring. The directories extracted from the license.zip file are
usually named after the license serial, e.g. 2100-8789-0322-0926-
2568-6429/.

 Step 3

Run buildout in the installation directory:

./bin/buildout

This will rebuild your Django project using the newly added eGenix
mxODBC Django Database Engine product.

 Step 4

To complete the installation, configure a database connection to use the
mxODBC Django Database Engine and restart Django.

Here's a quick example of a settings.py entry which uses the MS SQL Server
package of the database engine:

DATABASES = {
 'default': {
 'ENGINE': 'mxodbc_django.ms_sql_server',
 'NAME': 'exampledb',
 'DSN': 'DSN=sqlserver2008;UID=sa;PWD=123',
 'OPTIONS': {},
 }
}

The configuration of the mxODBC Django Database Engine is explained in
more detail further below.

15

mxODBC for Django - ODBC Interface for the Django Web Framework

2.5 Installation using easy_install

This section explains the installation of the mxODBC Django Database
Engine using an easy_install based approach. easy_install is a script that is
installed as part of the distribute or setuptools Python packaging system.

It uses egg files which contain binary Python packages for easy installation.

2.5.1 Before You Start

The binary installation egg files include everything you need to run the
mxODBC Django Database Engine, including the necessary egenix-mx-base
and egenix-mxodbc packages for Django.

Please make sure that you do not have egenix-mx-base or egenix-mxodbc
installed separately, since the installation will not succeed in such a
setup.

 Upgrading

easy_install will automatically upgrade your mxODBC Django Database
Engine to the latest release, if you run it with option --upgrade.

If want to install or upgrade a specific release, please specify the version as
requirement, e.g. easy_install egenix-mxodbc-django==1.2.0.

 License Files

In order to run the mxODBC Django Database Engine, you will need
license files from eGenix.com.

If you want to test the product before buying it, you can request evaluation
licenses via the eGenix.com web-site at http://www.egenix.com/.

When buying licenses from the eGenix.com online shop
(http://shop.egenix.com/), you will receive the license files immediately
after purchase.

In both cases, the license files are sent to the email address you specified
during the purchase process or from which you wrote the evaluation
license request in form of a ZIP license archive attached to the license email
– usually named licenses.zip.

16

https://pypi.python.org/pypi/distribute
https://pypi.python.org/pypi/setuptools
http://www.egenix.com/
http://shop.egenix.com/

2. Installation

The license archive licenses.zip contains one subdirectory per Django
Project license you bought. The directories are named after the license key
for each Django Project license. A typical license archive will have these
contents:

 2100-8789-0322-0926-2568-6429/mxodbc_django_license.py
 2100-8789-0322-0926-2568-6429/mxodbc_django_license.txt
 2100-8089-0312-0926-2668-6529/mxodbc_django_license.py
 2100-8089-0312-0926-2668-6529/mxodbc_django_license.txt

(in the above example, the license archive contains the files for two product
licenses).

In order to install the license files, please unzip the license archive to your
Django Project and place the mxodbc_django_license.* files into the
directory where your project's settings.py Django module is located.

If the mxODBC Django Database Engine cannot find the license module on
import, Django will give an error on startup.

2.5.2 Step-by-step Installation Guide

We assume that you have already installed Django and unzipped the
license files to the project directory as explained in the previous section.

 Step 1

Determine whether you are using a UCS2 or UCS4 build of Python.

Windows users always need the UCS2 version. Mac OS X users will most
likely also need the UCS2 version, since Python's default configuration is
to build a UCS2 interpreter. Linux users will likely need a UCS4 build.

To find out which variant your Python version was compiled with, run the
following command (if you are running Django with a different Python
interpreter, please replace bin/python with the one you are using):

bin/python -c "print('UCS%s'%len(u'x'.encode('unicode-internal')))"

This will either print out “UCS2” or “UCS4”.

 Step 2

You are now ready to install the eGenix Django Database Engine using
easy_install. Select one of the following variants depending on the outcome
of the UCS-test in the previous step.

17

mxODBC for Django - ODBC Interface for the Django Web Framework

If you are using a UCS2 version of Python, please run the following
command using the easy_install script corresponding to your Python
installation (usually in the same directory as the python binary).

easy_install \
-i https://downloads.egenix.com/python/index/ucs2/ \

 egenix-mxodbc-django

(please use the correct index URL for your Python version)

For a UCS4 version of Python, run:

easy_install \
-i https://downloads.egenix.com/python/index/ucs4/ \

 egenix-mxodbc-django

The above commands install the latest available version of the egenix-
mxodbc-django package. If you'd like to install a specific version, please add
a version restriction ("egenix-mxodbc-django==1.2.0"), e.g.

easy_install \
-i https://downloads.egenix.com/python/index/ucs4/ \

 egenix-mxodbc-django==1.2.0

This will install version 1.2.0 of the mxODBC Django Database Engine.

 Step 3

To complete the installation, configure a database connection to use the
mxODBC Django Database Engine and restart Django.

Here's a quick example of a settings.py entry which uses the MS SQL Server
package of the database engine:

DATABASES = {
 'default': {
 'ENGINE': 'mxodbc_django.ms_sql_server',
 'NAME': 'exampledb',
 'DSN': 'DSN=sqlserver2008;UID=sa;PWD=123',
 'OPTIONS': {},
 }
}

The configuration of the mxODBC Django Database Engine is explained in
more detail further below.

2.6 Installation using pip

This section explains the installation of the mxODBC Django Database
Engine using the pip package manager.

18

https://downloads.egenix.com/python/index/ucs2/
https://downloads.egenix.com/python/index/ucs4/
https://downloads.egenix.com/python/index/ucs4/
https://pypi.python.org/pypi/pip

2. Installation

pip uses a standard setup.py based approach for installation. We have
created a special prebuilt binary format which supports this kind of
interface and works well with pip.

Please note that you have to download the .prebuilt package file from our
website to install the egenix-mxodbc-django package, since pip can not
automatically select the correct file for your installation platform.

2.6.1 Before You Start

The binary installation prebuilt files include everything you need to run the
mxODBC Django Database Engine, including the necessary egenix-mx-base
and egenix-mxodbc packages for Django.

Please make sure that you do not have egenix-mx-base or egenix-mxodbc
installed separately, since the installation will not succeed in such a
setup.

 Upgrading

To force an upgrade, please add the --upgrade option to the pip installation
command below.

Upgrading to a specific version is simply done by downloading and using
the specific .prebuilt archive version for the installation.

 License Files

In order to run the mxODBC Django Database Engine, you will need
license files from eGenix.com.

If you want to test the product before buying it, you can request evaluation
licenses via the eGenix.com web-site at http://www.egenix.com/.

When buying licenses from the eGenix.com online shop
(http://shop.egenix.com/), you will receive the license files immediately
after purchase.

In both cases, the license files are sent to the email address you specified
during the purchase process or from which you wrote the evaluation
license request in form of a ZIP license archive attached to the license email
– usually named licenses.zip.

The license archive licenses.zip contains one subdirectory per Django
Project license you bought. The directories are named after the license key

19

http://www.egenix.com/
http://shop.egenix.com/

mxODBC for Django - ODBC Interface for the Django Web Framework

for each Django Project license. A typical license archive will have these
contents:

 2100-8789-0322-0926-2568-6429/mxodbc_django_license.py
 2100-8789-0322-0926-2568-6429/mxodbc_django_license.txt
 2100-8089-0312-0926-2668-6529/mxodbc_django_license.py
 2100-8089-0312-0926-2668-6529/mxodbc_django_license.txt

(in the above example, the license archive contains the files for two product
licenses).

In order to install the license files, please unzip the license archive to your
Django Project and place the mxodbc_django_license.* files into the
directory where your project's settings.py Django module is located.

If the mxODBC Django Database Engine cannot find the license module on
import, Django will give an error on startup.

2.6.2 Step-by-step Installation Guide

We assume that you have already installed Django and unzipped the
license files to the project directory as explained in the previous section.

 Step 1

Determine whether you are using a UCS2 or UCS4 build of Python.

Windows users always need the UCS2 version. Mac OS X users will most
likely also need the UCS2 version, since Python's default configuration is
to build a UCS2 interpreter. Linux users will likely need a UCS4 build.

To find out which variant your Python version was compiled with, run the
following command (if you are running Django with a different Python
interpreter, please replace bin/python with the one you are using):

bin/python -c "print('UCS%s'%len(u'x'.encode('unicode-internal')))"

This will either print out “UCS2” or “UCS4”.

 Step 2

Using the information obtained in step 1 and the name of your installation
platform, download the right .prebuilt package archive from the
eGenix.com website and place it into the Django installation directory.

20

http://www.egenix.com/products/django/mxODBCDjango/

2. Installation

 Step 3

You are now ready to install the eGenix Django Database Engine using pip.

Please run the following command using the pip script corresponding to
your Python installation (usually in the same directory as the python
binary).

pip install egenix-mxodbc-django-<version info>-prebuilt.zip

(replace egenix-mxodbc-django-<version info>-prebuilt.zip with
the filename you've downloaded)

This will install the mxODBC Django Database Engine.

Uninstallation, e.g. if you've accidentally installed a wrong version, can be
done using the standard pip uninstall command:

pip uninstall egenix-mxodbc-django

 Step 4

To complete the installation, configure a database connection to use the
mxODBC Django Database Engine and restart Django.

Here's a quick example of a settings.py entry which uses the MS SQL Server
package of the database engine:

DATABASES = {
 'default': {
 'ENGINE': 'mxodbc_django.ms_sql_server',
 'NAME': 'exampledb',
 'DSN': 'DSN=sqlserver2008;UID=sa;PWD=123',
 'OPTIONS': {},
 }
}

The configuration of the mxODBC Django Database Engine is explained in
more detail further below.

2.6.3 Uninstall

The pip installer keeps track of the files it installed for a package.

To uninstall the mxODBC Django Database Engine, run the following
command:

pip uninstall egenix-mxodbc-django

This will uninstall all files that can safely be removed from the system. It
will not remove files which were added to the subpackages after
installation, nor will it remove the license files you manually installed.

21

mxODBC for Django - ODBC Interface for the Django Web Framework

2.7 Installation using Windows MSI Installer

This section explains the installation of the mxODBC Django Database
Engine using the native Windows MSI installer files.

These installations create registry entries and can be uninstalled through
the standard Windows OS Software Management tools. The MSI installers
we provide allow for interactive, unattended and automated installs. Please
see the Python MSI installer features page on python.org for details on
available options.

In order to use the MSI installers, you have to download the .msi installer
file from the mxODBC Django Database Engine product page.

2.7.1 Before You Start

The binary MSI installers include everything you need to run the mxODBC
Django Database Engine, including the necessary egenix-mx-base and
egenix-mxodbc packages for Django.

Please make sure that you do not have egenix-mx-base or egenix-mxodbc
installed separately, since the installation will not succeed in such a
setup.

 Upgrading

When upgrading, we generally recommend uninstalling the previous
installation using the Windows Software Management tools first.

After the uninstall has completed, you can then proceed as usual with the
installation.

 License Files

In order to run the mxODBC Django Database Engine, you will need
license files from eGenix.com.

If you want to test the product before buying it, you can request evaluation
licenses via the eGenix.com web-site at http://www.egenix.com/.

22

http://www.python.org/download/releases/2.4/msi/
http://www.egenix.com/products/django/mxODBCDjango/
http://www.egenix.com/

2. Installation

When buying licenses from the eGenix.com online shop
(http://shop.egenix.com/), you will receive the license files immediately
after purchase.

In both cases, the license files are sent to the email address you specified
during the purchase process or from which you wrote the evaluation
license request in form of a ZIP license archive attached to the license email
– usually named licenses.zip.

The license archive licenses.zip contains one subdirectory per Django
Project license you bought. The directories are named after the license key
for each Django Project license. A typical license archive will have these
contents:

 2100-8789-0322-0926-2568-6429/mxodbc_django_license.py
 2100-8789-0322-0926-2568-6429/mxodbc_django_license.txt
 2100-8089-0312-0926-2668-6529/mxodbc_django_license.py
 2100-8089-0312-0926-2668-6529/mxodbc_django_license.txt

(in the above example, the license archive contains the files for two product
licenses).

In order to install the license files, please unzip the license archive to your
Django Project and place the mxodbc_django_license.* files into the
directory where your project's settings.py Django module is located.

If the mxODBC Django Database Engine cannot find the license module on
import, Django will give an error on startup.

2.7.2 Step-by-step Installation Guide

We assume that you have already installed Django and unzipped the
license files to the project directory as explained in the previous section.

 Step 1

If you are working on a Windows x64 system, you need to determine
whether you are using a 64-bit or a 32-bit build of Python on your
Windows system. On Windows x86 you can skip this step, since you'll
always have a 32-bit build of Python as well.

You can determine the Python variant by running the following command:

bin/python -c "import struct; print struct.calcsize('P')*8,'bit'"

The output will tell you whether your Python installation is a 32-bit or a 64-
bit one.

23

http://shop.egenix.com/

mxODBC for Django - ODBC Interface for the Django Web Framework

 Step 2

Using the information obtained in step 1 and the variant of your installation
Windows platform (Windows x86 or x64), please download the right .msi
installer archive from the eGenix.com website and place it into the Django
installation directory.

 Step 3

You are now ready to install the eGenix Django Database Engine. Simply
double-click on the egenix-mxodbc-django-….msi file and follow the
instructions. This will install the mxODBC Django Database Engine.

During the installation, you have to answer a few user access control (UAC)
dialogs. Depending on the installation location of Python, it may also be
necessary to run the MSI file as administrator.

Please note that it's better to "install for all users", since per-account
installations of Python tend to cause permission problems.

 Step 4

To complete the installation, configure a database connection to use the
mxODBC Django Database Engine and restart Django.

Here's a quick example of a settings.py entry which uses the MS SQL Server
package of the database engine:

DATABASES = {
 'default': {
 'ENGINE': 'mxodbc_django.ms_sql_server',
 'NAME': 'exampledb',
 'DSN': 'DSN=sqlserver2008;UID=sa;PWD=123',
 'OPTIONS': {},
 }
}

The configuration of the mxODBC Django Database Engine is explained in
more detail further below.

2.7.3 Uninstall

The Windows installer will automatically register the installed software with
the standard Windows software management tool.

To uninstall the mxODBC Django Database Engine, run the Windows
Software Management tool and select the "Python x.x eGenix mxODBC
Django Database Engine x.x" entry for deinstallation.

24

http://www.egenix.com/products/django/mxODBCDjango/

2. Installation

This will uninstall all files that can safely be removed from the system. It
will not remove files which were added to the subpackages after
installation, nor will it remove the license files you manually installed.

25

mxODBC for Django - ODBC Interface for the Django Web Framework

3. Configuration

The configuration of access to a database involves two steps:

1. Configuration of the database as ODBC data source

2. Connecting Django to the data source using the mxODBC Django
Database Engine

The next sections explain the details of these two steps.

3.1 ODBC Data Source Configuration

Before being able to connect to a database, you have to configure the
database as data source in the Operating System's ODBC manager.

3.1.1 General Notes

These notes apply to all platforms.

 Connection Pooling by the ODBC Manager

As of version 1.5, Django does not provide database connection pooling.
This can result in poor performance, since Django usually reconnects to the
database on every single request.

Fortunately, ODBC manager usually come with connection pooling built-in,
so it's possible to work around this problem.

You can turn on connection pooling in your ODBC manager's GUI, whether
on Linux, Mac OS X or Windows system. If you'd rather like to enable the
setting without using a GUI, please consult your ODBC manager's
documentation.

When using ODBC manager connection pooling, please make sure that:

• your web application still works as intended

• performance does goes up

26

3. Configuration

Enabling connection pooling in the ODBC manager can have unwanted
side-effects, e.g. due to connection settings leaking across requests, which
can result in the web application becoming unstable.

It can also result in poor performance with some databases, so testing the
setting is needed and no general recommendation can be given.

3.1.2 Windows Platform

On Windows, you must configure the ODBC manager through the
standard system settings dialogs (ODBC Data Sources).

Please consult the Windows help files and your database/ODBC driver
documentation for details on how to setup data sources in the Windows
ODBC Manager.

Note that if you plan to run Django as Windows service, it may be
necessary to setup the ODBC data sources as System-DSN. Otherwise,
the Django process won’t be able to see or access the ODBC data
sources you setup in the Windows ODBC manager.

 Platform Default ODBC Manager

The platform default ODBC manager (the one selected using
mxodbc_manager="Manager" in the connection options) on Windows is
always the Windows ODBC manager.

On 64-bit Windows platforms, Windows comes with two versions of the
Windows ODBC manager: a 32-bit version and a 64-bit version. The 32-bit
version of mxODBC Django Database Engine will choose the 32-bit one,
the 64-bit version of mxODBC Django Database Engine the 64-bit ODBC
manager.

3.1.3 Unix Platform

On Unix (Linux or Solaris), it suffices to supply a standard ODBC INI file
either as /etc/odbc.ini or in the Django user home directory as ~/.odbc.ini
(note the leading ‘.’) file which uses the same syntax as the Windows file
ODBC.INI.

Alternatively, you can use the unixODBC/iODBC/DataDirect management
GUIs which allows setting up data sources in the same way as the
Windows ODBC manager provides on Windows.

27

mxODBC for Django - ODBC Interface for the Django Web Framework

Details on the ODBC manager configuration on Unix can be found on the
websites of the ODBC managers:

unixODBC - http://www.unixodbc.org/

iODBC - http://www.iodbc.org/

DataDirect - http://www.datadirect.com/

Please consult your database / ODBC driver documentation for details on
how to setup data sources using these ODBC managers.

Note that you only need to have one of these ODBC managers installed
on the installation machine for the mxODBC Django Database Engine to
work.

 Platform Default ODBC Manager

The platform default ODBC manager (the one selected using
mxodbc_manager="Manager" in the connection options) depends on
which ODBC manager mxODBC Django Database Engine finds during
startup. It select the first one found from the above given list, i.e.
unixODBC, iODBC, DataDirect.

3.1.4 Mac OS X Platform

On Mac OS X, please configure the ODBC manager through the standard
system ODBC Administrator. Open the finder and navigate to Applications /
Utilities / ODBC Administrator.

Internally, the ODBC Administrator builds upon the open-source ODBC
manager iODBC, so the comments related to iODBC also apply to the Mac
OS X ODBC manager.

If you are running Mac OS X 10.6 or later and don't have the ODBC
Administrator installed, you can download and install it from Apple.

Please consult the Mac OS X help and your database/ODBC driver
documentation for details on how to setup data sources in the Mac OS X
ODBC Administrator.

28

http://www.unixodbc.org/
http://www.iodbc.org/
http://www.datadirect.com/
http://support.apple.com/downloads/ODBC_Administrator_Tool_for_Mac_OS_X

3. Configuration

If you are running on Mac OS X 10.6 and have problems finding the data
sources configured with the ODBC Administrator in the mxODBC Django
Database Engine data source list or connecting to them, please see this
Mac Dev Center article for a fix.

 Platform Default ODBC Manager

The platform default ODBC manager (the one selected using
mxodbc_manager="Manager" in the connection options) depends on
which ODBC manager mxODBC Django Database Engine finds during
startup. It select the first one found from the above given list, i.e.
unixODBC, iODBC.

Unless you have installed the unixODBC ODBC manager by hand or via
Mac Ports and configured an appropriate linker setup, this will select the
iODBC ODBC manager as default.

3.2 ODBC Driver/Manager Troubleshooting

This section collects a few hints and tricks we have gathered during the
beta testing and rollout phase which may be helpful in setting up a working
ODBC connection.

Since ODBC drivers can sometimes vary in quality and features, care has to
be taken when configuring the ODBC drivers so that you get the best
performance and stability possible.

Please note that some of the following sections on ODBC drivers do not
may not apply to the current version of the mxODBC Django Database
Engine, since the respective database backends are not supported by the
Django ORM integration. We still include them, since it is well possible
to connect to these databases directly via the include underlying
mxODBC Python interface.

3.2.1 Windows ODBC Manager

The Windows ODBC manager implements a feature called Connection
Pooling which allows faster connects to databases. In some cases we have
observed failures and problems when using the connection pooling feature
of the ODBC manager together with the mxODBC Django Database
Engine.

29

http://developer.apple.com/mac/library/releasenotes/ToolsLanguages/ODBCNoPerUserConfigs106/
http://developer.apple.com/mac/library/releasenotes/ToolsLanguages/ODBCNoPerUserConfigs106/

mxODBC for Django - ODBC Interface for the Django Web Framework

If you are observing similar problems, we suggest that you turn off
connection pooling in the Windows ODBC manager for those data sources
that you wish to use the Django Database Engine for.

3.2.2 Unix ODBC Managers iODBC, unixODBC and DataDirect

On Unix the mxODBC Django Database Engine uses an already installed
iODBC, unixODBC or DataDirect manager to communicate with the
installed ODBC drivers.

At Django startup time, the Django Database Engine tries to import the
interfaces for the ODBC managers and writes a notice to the Django
startup shell window. Django can only use those interfaces which are
successfully imported at this point.

If all interfaces fail to load, the mxODBC Django Database Engine will not
be usable.

Typical problems which prevent the mxODBC Django Database Engine
from correctly importing the underlying mxODBC interfaces to the ODBC
managers are:

• missing ODBC manager installations,

• missing permissions of the Django user account to access the
shared libraries of the ODBC managers (these are typically called
libiodbc.so and libodbc.so),

• incorrectly setup linker parameters: the dynamic linker cannot find
the shared libraries; this can usually be remedied by setting the
LD_LIBRARY_PATH environment variable,

• incompatible ODBC manager versions.

If you use recent versions of the iODBC, unixODBC or DataDirect ODBC
managers, the last point is less likely, since eGenix always builds the binary
distributions of the mxODBC Django Database Engine against the latest
stable releases of these managers.

3.2.3 Microsoft Access ODBC Driver

The MS Access database uses the Jet Engine to access the database. ODBC
drivers for the Jet Engine prior to version 4.0 are not thread-safe and can
cause problems if used with mxODBC Django Database Engine.

30

3. Configuration

Please make sure that you have the latest revision of the Jet Engine and
corresponding ODBC drivers installed.

If you get an error HY024 mentioning an invalid option value during
connect, it is likely that the data source is an auto-commit-only data
source (meaning that it doesn’t support transactions), e.g. a file data
source.

In such a case:

• create a connection object that is initially closed,

• go to the properties tab of the connection object,

• select “Use Auto-Commit” and “Open Connection”

• click “Save Changes”

The connection should now be opened in auto-commit mode. Note that the
data source will not participate in the Django transaction mechanism. You
should only use such data sources for reading data, not writing data.

3.2.4 IBM DB2 ODBC Driver

The DB2 ODBC Driver for Windows has an optimization option called
“early cursor close” (or similar). This has to be switched off. Otherwise,
you’ll get lots of SQLSTATE 08001 or 080003 errors during connects and
parallel execution of SQL Methods becomes impossible.

3.2.5 SAP DB ODBC Driver

Some versions of the SAP DB ODBC driver have a problem with reporting
the correct scale of float columns.

This should not harm the functionality of the mxODBC Django Database
Engine.

3.2.6 FreeTDS ODBC Driver (access MS SQL Server from Linux)

The FreeTDS ODBC driver is a free ODBC driver for Unix which allows you
to connect from Unix to Sybase and/or Microsoft's SQL Server running on
different platforms such as Windows 2000.

31

mxODBC for Django - ODBC Interface for the Django Web Framework

Please note that the driver's current versions (0.9x) still lack a few ODBC
features which you may need for production work. Unicode support was
added just recently in version 0.91.

To work around the showstopper bugs in the driver, eGenix has added a
set of compatibility features to the underlying mxODBC interface to at least
make the setup mxODBC Django Database Engine + FreeTDS driver
usable for standard queries to the supported databases. See the mxODBC
Documentation for hints on how to setup FreeTDS to work together with
the mxODBC Django Database Engine.

For production systems, we recommend deploying professional quality
ODBC drivers to access MS SQL Server and/or Sybase, such as the ones
available from EasySoft, OpenLink and DataDirect.

3.2.7 MS SQL Server Native Client for Linux

This is a new ODBC driver from Microsoft which was ported from the
existing mature SQL Server Native Client driver version 11 on Windows. It
is currently only available for 64-bit Linux variants.

It is more robust than the FreeTDS ODBC driver and provides better
Unicode support, but also has the same issues as the SQL Server Native
Client driver on Windows.

Please see the mxODBC documentation for details on setting up the driver.

3.2.8 PostgreSQL ODBC Driver

The PostgreSQL project has an ODBC driver which is available for
Windows as binary and also compiles on Unix from source.

On Unix, the driver is typically included in unixODBC ODBC manager
binary packages, so you may have the driver already installed if you're
running Django on Unix and have unixODBC installed (the ODBC driver
file is called psqlodbc.so).

Connecting to PostgreSQL using e.g. unixODBC or the Windows ODBC
manager works just like for all other databases.

The only known problem with the ODBC driver for PostgreSQL is the lack
of support for BLOBs (binary long objects). Please refer to the ODBC driver
documentation for ways to work-around this caveat in the driver. Apart
from that data type, all basic data types are supported.

32

3. Configuration

3.2.9 Other ODBC Drivers and Manager Setups

More information about various ODBC driver and manager setups can be
found in the mxODBC Documentation: Interface – Subpackages - General
Notes.

33

mxODBC for Django - ODBC Interface for the Django Web Framework

4. Setting up your Django application

mxODBC Django Database Engine provides backends can be used with any
Django application to access database servers through mxODBC and the
ODBC interface in general.

The typical setup looks like this:

Django Application

↓

Django ORM database backend layer

↓

mxODBC Django Database Engine subpackage

↓

mxODBC Package

↓

ODBC Manager
(Windows, unixODBC, iODBC, DataDirect)

↓

ODBC Driver

↓

(Network or Local Connection)

↓

Database

The upper blue part in the diagram executes within the process of the
Python application. The green part usually runs in a separate process and
possibly also on a different machine.

34

4. Setting up your Django application

Please consult with the mxODBC Manual for further information on the
configuration of data sources and ODBC drivers.

4.1 Configuring database access

You will need to make some changes to the settings.py file of your Django
application. Let's start with an example configuration:
DATABASES = {
 'default': {
 'ENGINE': 'mxodbc_django.ms_sql_server',
 'NAME': 'exampledb',
 'DSN': 'DSN=example;UID=sa;PWD=123',
 'OPTIONS': {},
 }
}

The above configuration will connect to the ODBC data source (DSN)
"example" using the UID (user name) and PWD (password) credentials
given in the DSN entry of the Django database connection.

The DSN must point to a database stored in a Microsoft SQL Server
instance, since we defined ms_sql_server as the mxODBC Django
Database Engine subpackage to use.

Note that the database server does not need to be on the same machine as
your Django application, but you have to make sure that the ODBC driver
can connect to the server.

There are also a few backend options supported by mxODBC Django
Database Engine to configure details specific to mxODBC or the database
server in use. Please see the next sections for details.

4.1.1 Database settings

mxODBC Django Database Engine supports the following database
settings:

ENGINE

String containing the full (dotted) name of the mxODBC Django
Database Engine subpackage to use.

Possible values:

mxodbc_django.ms_sql_server

MS SQL Server subpackage

35

mxODBC for Django - ODBC Interface for the Django Web Framework

Please make sure that you select the right subpackage for your database
backend.

DSN

This variable must be set to the ODBC connection string for the data
source you have configured in the system's ODBC manager.

The general format is:

DSN=<data source name>;UID=<user name>;PWD=<password>

The ODBC driver defined for the data source may support additional
configuration options that you can specify in the connection string, e.g.
the database name or a host name to connect to.

It is also possible to use the DSN string to open connections to
databases that are not defined in the ODBC manager (DSN-less
connections), if you know the name of the ODBC driver and other
connection details such as network locations, ports, etc.

Please consult your ODBC manager/driver's documentation for details.
The mxODBC User Manual also provides some additional advice on how
to configure commonly used ODBC drivers.

Note: While it's possible to use the settings USER and PASSWORD to
define the user name and password (for compatibility with other Django
database engines), specifying these values in the DSN variable is the
preferred way to setup the mxODBC Django Database Engine.

NAME

Django name of the database entry.

Note that the name of the database specified in the settings module has
no relevance for the data source defined by the DSN setting. It is used
by Django internally to identify the database and detect aliases in the
DATABASES settings dictionary.

You can specify the database to be used by the database entry in the
DSN connection string via the Database= parameter, or in the data
source setup of the ODBC manager. The details depend on the used
ODBC driver and manager. Please check their documentation for
details. The mxODBC User Manual has an extensive section with
examples of how to setup databases connection strings and configure
ODBC drivers.

USER

Database user name to connect with.

You only need to specify this variable, if you have not provided the user
name as UID=<user name> in the DSN variable.

36

4. Setting up your Django application

PASSWORD

Password of the user to connect with.

You only need to specify this variable, if you have not provided the user
name as PWD=<password> in the DSN variable.

OPTIONS

Dictionary of backend options.

See section 4.1.2 Database backend options for details.

Example:

DATABASES = {
 'default': {
 'ENGINE': 'mxodbc_django.ms_sql_server',
 'NAME': 'exampledb',
 'DSN': 'DSN=sqlserver2008;UID=sa;PWD=123',
 'OPTIONS': {
 'mxodbc_encoding': 'cp1252',
 },
 }
}

or, using the standard Django settings for USER and PASSWORD:
DATABASES = {
 'default': {
 'ENGINE': 'mxodbc_django.ms_sql_server',
 'NAME': 'exampledb',
 'DSN': 'DSN=sqlserver2008',
 'USER': ', 'sa
 'PASSWORD': 123', '
 'OPTIONS': {
 'mxodbc_encoding': 'cp1252',

 }

 },

}

4.1.2 Database backend options

mxODBC Django Database Engine supports the following backend options
which can be defined as key-value pairs in the OPTIONS database setting
dictionary:

autocommit

Turn on/off auto commit on the connection.

Auto commit means that changes on the database connection are
immediately written to the database, even if the processed web request
causes an error.

Note that turning on autocommit should really only be done for read-
only connections. A connection running in auto commit mode can easily

37

mxODBC for Django - ODBC Interface for the Django Web Framework

cause data corruption in case of errors during the processing of a
request.

Default is to disable auto commit when connecting to the database. Set
the option to True to enable auto commit.

mxodbc_application_encoding

Name of the encoding to assume for 8-bit string literals that are quoted
to be added literally to SQL statements built by the Django ORM.

mxODBC Django Database Engine needs to apply this conversion, since
it converts all SQL statements to Unicode prior to passing them to the
database.

Defaults to 'utf-8'.

mxodbc_connection_encoding

Name of the encoding used to encode/decode data passed to/from the
ODBC driver. mxODBC's connection.encoding is set to this value. It
uses the encoding to convert text data between the database and the
application, in case the ODBC driver does not know how to handle
Unicode or the database requests text data while Django sends
Unicode.

The default value is 'cp1252' for the FreeTDS ODBC driver versions prior
to 0.91 and 'utf-8' for all others.

Note that default is to send Unicode data as native Unicode to the
ODBC driver. See the mxodbc_stringformat option for details.

mxodbc_datetime_as_string

Forces the conversion of all date, time and datetime objects into strings
before passing them to the ODBC driver as a parameter.

The conversion is disabled by default.

You can enable or disable it by setting the option to True or False.

mxodbc_exact_collation

Name of the database server collation used for exact string
comparisons.

Django's ORM expects the chosen collation to be case and accent
sensitive. The sort order can be adjusted to suit your needs (binary or
some dictionary order).

Defaults to 'Latin1_General_BIN' for Microsoft SQL Server.

Please see your database backend documentation for available collation
names.

38

4. Setting up your Django application

mxodbc_inexact_collation

Name of the database server collation used for inexact string
comparisons.

Django's ORM expects the chosen collation to be a case insensitive, but
accent sensitive collation. The sort order can be adjusted to suit your
needs (binary or some dictionary order).

Defaults to 'Latin1_General_CI_AS' for Microsoft SQL Server.

Please see your database backend documentation for available collation
names.

mxodbc_init

List of SQL statements to execute right after initiating the ODBC
connection. This option can be used to implement database specific
configurations of the connection, which are not possible through ODBC
driver settings.

Each item can be an string containing an SQL statement or a (sql,
parameters) tuple.

Defaults to an empty list.

mxodbc_manager

Name of the mxODBC subpackage / ODBC manager to use.

Defaults to 'Manager', which automatically selects the appropriate
ODBC Manager for the platform running the Django application.

Possible values:

Manager

Automatically select an appropriate ODBC manager. On Windows,
this selects the Windows ODBC manager. On Unix platforms, the
first available manager from the following ODBC managers is
chosen: unixODBC, iODBC, DataDirect.

Windows

Windows ODBC manager. Only possible other option on Windows.
Not available on other platforms.

unixODBC

unixODBC ODBC manager. Unix only.

iODBC

iODBC ODBC manager. Unix only.

39

mxODBC for Django - ODBC Interface for the Django Web Framework

DataDirect

DataDirect ODBC manager. Currently only available for Linux
platforms.

mxodbc_monkey_patch_aggregates

Enables monkey patching the Django Query class' .aggregate_module
module attribute to allow Django ORM aggregate functions to work with
MS SQL Server. The setting is enabled by default.

To disable the monkey patching, set the attribute to False. This will
result in aggregate ORM functions provided by Django to fail with the
MS SQL Server backend due to incompatibilities between the SQL code
used by the Django implementation for these functions.

mxodbc_monkey_patch_database_cache

Enables monkey patching the Django DatabaseCache class to allow the
Django ORM database cache functionality to work with MS SQL Server.
The setting is enabled by default.

To disable the monkey patching, set the attribute to False. This will
result in database cache ORM function provided by Django to fail with
the MS SQL Server backend due to incompatibilities between the SQL
code used by the Django implementation for the caching functionality.

mxodbc_stringformat

Set the mxODBC string format to use.

Default is to use mxODBC's NATIVE_UNICODE_STRINGFORMAT, since
most drivers support Unicode today.

If a driver does not support Unicode, you have to set this to mxODBC's
UNICODE_STRINGFORMAT.

The FreeTDS ODBC drivers prior to version 0.91 do not support
Unicode. mxODBC Django Database Engine defaults to
UNICODE_STRINGFORMAT for those drivers automatically. For other
drivers, you may have to adjust the setting if you run into problems with
Unicode data or SQL statements.

Please consult the mxODBC User Manual for additional details. Note
that mxODBC itself defaults to EIGHTBIT_STRINGFORMAT for all drivers
in order to stay backwards compatible with older mxODBC versions.

mxodbc_timestampresolution

Sets the mxODBC timestamp resolution to use on connections. The
value is given in nanoseconds as integer.

Default is 1000000 nanoseconds, which corresponds to 1 millisecond.
Using lower values can cause MS SQL Server to raise errors.

40

4. Setting up your Django application

You can override that default by explicitly passing an integer
nanosecond value here. Please consult the mxODBC User Manual for
details.

Please note that you normally do not need to modify this value.

mxodbc_use_executedirect

Forces using of the mxODBC cursor.executedirect() method
instead of the cursor.execute() method used normally.

This option is enabled by default for MS SQL Server database backends,
since it results in better performance and allow working around some
problems with the FreeTDS ODBC driver, but left disabled for all other
database servers.

You can enable or disable it by setting the option to True or False.

Example:
DATABASES = {
 'default': {
 'ENGINE': 'mxodbc_django.ms_sql_server',
 'NAME': 'exampledb',
 'DSN': 'DSN=sqlserver2008;UID=sa;PWD=123',
 'OPTIONS': {
 'mxodbc_encoding': 'cp1252',
 'mxodbc_exact_collation': 'Latin1_General_BIN',
 'mxodbc_inexact_collation': 'Latin1_General_CI_AS',
 },
 }
}

The syntax used for defining the OPTIONS dictionary is standard Python
syntax.

41

mxODBC for Django - ODBC Interface for the Django Web Framework

5. Using the mxODBC Django Database Engine

There are two ways to connect to databases using the mxODBC Django
Database Engine:

• connecting using the Django ORM and using the database under
ORM control

• connecting using the mxODBC API and using the database using
the DB-API 2.0 compatible interface

The following sections explain the details on both variants.

5.1 Using the Django ORM with mxODBC

The mxODBC Django Database Engine implements the ORM database
engine API needed by the Django ORM to work with the database.

5.1.1 MS SQL Server as database backend for the Django ORM

The Django ORM engine implementing the ORM interface for MS SQL
Server is called

mxodbc_django.ms_sql_server

This is the database engine name that you have to use for the ENGINE entry
in the DATABASES setting of your Django projects settings.py module.

Example:
DATABASES = {
 'default': {
 'ENGINE': 'mxodbc_django.ms_sql_server',
 'NAME': 'exampledb',
 'DSN': 'DSN=sqlserver2008;UID=sa;PWD=123',
 }
}

Once configured, you can use the Django ORM with the MS SQL Server
backend data source as usual. Please see the Django User Manual for
details on how to use the Django ORM interface, in particular the Django
model layer documentation.

42

https://docs.djangoproject.com/en/dev/contents/
https://docs.djangoproject.com/en/dev/topics/db/
https://docs.djangoproject.com/en/dev/
https://docs.djangoproject.com/en/dev/

5. Using the mxODBC Django Database Engine

 Database Permissions

If you intend to run python manage.py syncdb on the connection, please
make sure that the database user you are connecting with has sufficient
database permissions to create and alter tables.

 Date/Time Fields

For maximum compatibility across MS SQL Server versions, the
mxodbc_django.ms_sql_server engine uses SQL Server datetime fields
to represent Django DateField(), DateTimeField() and TimeField().2

The engine takes care of automatically converting between the Python
datetime module values and the database values, i.e. a TimeField() will
be returned as datetime.time object, even though the database stores it
together with a 1970-01-01 date.

A side-effect of this is that the Min() and Max() aggregates on DateField()
and TimeField() fields don't work as expected. See 6.1.4 Min() / Max() and
DateField() / TimeField() for details.

MS SQL Server's datetime field supports a range of January 1, 1753,
through December 31, 9999. Any other dates will cause an exception to be
raised.

Seconds fractions are rounded to the nearest millisecond before passing the
values to SQL Server. MS SQL Server itself only supports a resolution of
3.33 milliseconds and rounds these to the nearest increments of 0.000,
0.003, 0.007 seconds. See 6.1.3 Limited MS SQL Server datetime precision
for more details.

 Limitations

Please note that some minor limitations apply when using MS SQL Server
as ORM backend. These are listed in section 6.1 Known problems and
limitations of the MS SQL Server subpackage.

5.1.2 Working with databases which are not supported by the ORM

At the moment, we only support MS SQL Server as ORM backend in the
mxODBC Django Database Engine.

2 In future versions of mxODBC Django Database Engine, we plan to optionally make
use of the date and time fields, that were added in SQL Server 2008.

43

mxODBC for Django - ODBC Interface for the Django Web Framework

If you want to access other database backends, you will either have to try
using the MS SQL Server subpackage mxodbc_django.ms_sql_server of
the mxODBC Django Database engine, or directly interface to the database
using the mxODBC API, which provides a Python DB-API 2.0 with many
extensions.

Please see the section 5.2 Direct mxODBC Database Interfacing for details,
if you plan to use mxODBC directly from within Django.

5.2 Direct mxODBC Database Interfacing

The mxODBC Django Database Engine was written to aid in using
mxODBC with the Django ORM. However, it is easily possible to also use
the included mxODBC library directly for interfacing to database backends.

5.2.1 mxODBC Python API

Please see the mxODBC User Manual and Reference Guide for details on
the mxODBC Python API.

If you want to learn more about the Python DB-API 2.0, which mxODBC
implements, please have a look at the following resources:

• Python PEP 249: The Python DB-API 2.0

• eGenix Talk: Introduction to Python Database Programming

5.2.2 Importing mxODBC into your Django application

Importing mxODBC can be done from a Django application just like from
within a normal Python script. The only difference is that you have to
import the mxodbc_django package before trying to import mx.ODBC.

Importing the mxodbc_django package makes sure that mxODBC is
configured correctly for use in Django. If you forget to import the package
before importing mx.ODBC, you will get an ImportError.

44

http://www.python.org/dev/peps/pep-0249/
http://www.egenix.com/library/presentations/EuroPython2011-Introduction-to-Python-Database-Programming/

5. Using the mxODBC Django Database Engine

5.2.3 Example of using the mxODBC Database Interface in Django

In this short example. we're highlighting some important details of using
the mxODBC database interface in Django.

First is the way mxODBC is imported:

Import the mxODBC Django Database Engine to setup mxODBC
for use in Django
import mxodbc_django

Now, import mxODBC as usual
import mx.ODBC.Manager as ODBC

It is important to note that the mxodbc_django package has to be imported
prior to importing mxODBC itself.

Hint: Using the mx.ODBC.Manager subpackage allows your Django
application to work in most configuration settings, since it removes the
need to know which ODBC manager the system is using.

Next, you can open a data connection by providing a data source
connection string to the DriverConnect constructor:

Open a connection to a database
connection = ODBC.DriverConnect(connection_string)

Once you have the connection, you can create cursors on the connection to
execute statements.

Create a cursor to run SQL statements
cursor = dbc.cursor()

Run a query
cursor.execute(query_sql, parameters)

Fetch the results
results = cursor.fetchall()

Insert/update some rows
cursor.executemany(insert_sql, list_of_parameters)

Whenever making changes to the database, you have to commit those
changes explicitly to make them permanent in the database. If you don't,
the changes will be rolled back again as soon as you close the connection.3

Commit the changes that you have made to the database; If you
forget this, your inserts won't be written permanently to

3 If you setup an auto-commit connection, all changes will be permanent
immediately, so you don't have to call .commit(). However, you also lose the
possibility to easily undo changes.

45

mxODBC for Django - ODBC Interface for the Django Web Framework

the database (unle
connection.commit()

ss you've setup an auto-commit connection)

You often have auto-increment fields in databases, especially for primary
keys. If you want to know which values have been created by the database,
you need to fetch those values after the insert.

Run another query, e.g. to check the inserts and fetch
the generated primary keys
cursor.execute(query_sql, parameters)

Fetch the results
results = cursor.fetchall()

Once you're done with using the database cursor, make sure you close the
cursor to free up resources.

Close the cursor after you've finished using it in order
to free up resources
cursor.close()

The same has to be done with the connection. Note that closing the
connection will do an implicit roll back of all uncommitted changes o the
connection.

Close the connection to the database to free up resources
connection.close()

5.2.4 Transaction Management

There is one important aspect to keep in mind when using the mxODBC
Python API directly in your Django apps: The Django ORM uses its own,
mostly automatic transaction management.

When using mxODBC directly, you will have to either integrate the
connection transactions with the ORM or manage your own transaction
management.

 Default transaction mode is manual commit

In particular, mxODBC does not default to auto-commit mode, so you have
to commit all changes to the database explicitly by calling
connection.commit() (or connection.rollback() in case you want to
revert the changes).

Without an explicit connection.commit() call, changes will not be written
to the database. mxODBC defaults to rolling back the changes, if a
connection is closed without a commit.

46

5. Using the mxODBC Django Database Engine

 Enabling Auto-Commit

You can enable auto-commit on a connection by setting

connection.autocommit = True

after having connected to the database. However, this is not encouraged,
since doing can easily create inconsistencies in your database if your
Django application runs into an unexpected error.

To disable auto-commit, close all cursors on the connection and run:

connection.autocommit = False

47

mxODBC for Django - ODBC Interface for the Django Web Framework

6. Additional information

6.1 Known problems and limitations of the MS SQL
Server subpackage

The Django internal database API has evolved quite a bit over time. Even
though most of it is now written in a way that makes it portable between
backends, there are some areas which still use hard-coded SQL or make
assumptions that don't apply to all database backends.

In this section we list known problems and limitations with the Microsoft
SQL Server subpackage mxodbc_django.ms_sql_server of the mxODBC
Django Database Engine.

Most of the limitation arise from the fact that MS SQL Server is missing
some features used in the Django ORM, or requires a different SQL dialect
than the database backends natively supported by Django.

While we have tried to work around a couple of issues, some assumptions
made in the ORM cannot easily be fixed without changing the ORM code
and making it more portable.

6.1.1 mxODBC Django Database Engine currently only supports Microsoft SQL
Server

mxODBC Django Database Engine currently only supports Django ORM
integration for Microsoft SQL Server 2005, 2008 and 2012.

We will add support for other database servers in future releases.

Note that the Django ORM integration is available on all supported
platforms, not only Windows, provided you have an ODBC driver available
for the platform.

On Linux, we suggest looking at the official Microsoft SQL Server Native
Client for Linux. On other Unix platforms, the FreeTDS ODBC driver or one
of the many commercial drivers can be used.

48

6. Additional information

6.1.2 Django timezone support doesn't work well with MS SQL Server

The ODBC API does not support passing or retrieving timezone aware
date/time values. As a result the underlying mxODBC cannot easily support
timezone aware datetime objects.

In order to maintain compatibility with Django 1.4 and later that support
the USE_TZ setting, the mxODBC Django Database Engine ignores the
.tzinfo attribute on datetime objects passed to the adapter. All date/time
data read from the database will also not have the .tzinfo attribute set.

 Avoid using USE_TZ

We recommend not using the USE_TZ setting when using MS SQL Server
as database backend. It is best practice to store date/time values as
Universal Time (UTC) in the database and to apply any locale dependent
conversion in the UI layer of the application - based on user, browser,
session or system preferences.

 Avoid date/time string literals and implicit datetime to string conversion

Likewise try to avoid implicit conversion of datetime values to strings. MS
SQL Server interprets such literal date/time values in a locale dependent
way, which can lead to surprising results.

6.1.3 Limited MS SQL Server datetime precision

MS SQL Server datetime fields only have an accuracy of 3.33 milliseconds,
or short 0.00333 second, not the microsecond accuracy of Python datetime
objects. Furthermore, it rounds to the nearest increment of 0.000, 0.003,
0.007 seconds.

 Unwanted Rounding

This can lead to unexpected behavior when querying date/time or time
ranges, esp. when using non-inclusive upper limits in range queries or
when inserting timestamps which could be subject to unwanted rounding.

Example:

Instead of datetime(2008, 12, 31, 23, 59, 59, 999999) you may
have to use datetime(2008, 12, 31, 23, 59, 59, 997000) as
date/time value, since using 999999 microseconds could cause rounding to
datetime(2009, 1, 1, 0, 0, 0, 0).

49

mxODBC for Django - ODBC Interface for the Django Web Framework

The mxODBC Django Database Engine uses datetime fields for Django
DateField(), DateTimeField(), TimeField(), so the above applies to all those
Django ORM fields.

 Avoid mixed-date/time field type comparisons/filtering

For the same reasons as above, it is also good practice to not use mixed
date/time comparisons or filtering, such as comparisons of a DateField()
with a DateTimeField() in a filter.

Always try to use comparisons/filtering between same-type date/time fields
to avoid introducing bugs into your application due to rounding, e.g.
DateFields() with DateField(), or DateTimeField() with
DateTimeField().

6.1.4 Min() / Max() and DateField() / TimeField()

Because DateField() and TimeField() Django fields are mapped to SQL
Server datetime fields, the SQL aggregate function MIN() and MAX() on
these fields will return datetime.datetime objects when queried from the
database.

As a result, the Django aggregate functions Min() and Max() will return
datetime.datetime objects as well - even when used on DateField() or
TimeField() fields.

Since the needed field information is not available to the ORM aggregate
functions and Django doesn't provide a clean way to override them, this
cannot be changed.

6.1.5 Character encoding related problems

When using the FreeTDS ODBC driver on Unix systems, applications may
be limited to the character set of a specific encoding, since FreeTDS has
only just started supporting Unicode natively in recent releases.

The following exceptions are examples of the exceptions you get whenever
the applications tries to use characters that are not supported by the
encoding:

OperationalError: ('HY000', 2402, "[unixODBC][FreeTDS][SQL
Server]Error converting characters into server's character set.
Some character(s) could not be converted", 7737)

UnicodeEncodeError: 'charmap' codec can't encode characters in
position 0-1: character maps to <undefined>

50

6. Additional information

UnicodeEncodeError: 'charmap' codec can't encode character u'\x84'
in position 5: character maps to <undefined>

Some unit tests in the Django unit test suite fail due to this limitation when
running on a Unix system with FreeTDS.

You can adjust the encoding used by the mxODBC Django Database Engine
by setting the mxodbc_connection_encoding database option in your
settings.py file:

DATABASES = {
 'default': {
 'ENGINE': 'mxodbc_django.ms_sql_server',
 'NAME': 'exampledb',
 'DSN': 'DSN=sqlserver2008;UID=sa;PWD=123',
 'OPTIONS': {
 mxodbc_connection_encoding: 'cp1252',
 },
 }
}

Note that mxODBC Django Database Engine will automatically default to
'cp1252' when using FreeTDS on Unix and 'utf-8' when using the SQL
Server Native Client ODBC driver on Windows.

6.1.6 Deferred constraint checking is not supported on MS SQL

There is no generic support for deferred checking of foreign key constraints
in Microsoft SQL Server.

As consequence, mxODBC Django Database Engine does not allow using
this feature and raises an exception whenever there are conflicts due to
foreign key constraints, e.g. when trying to load data in the wrong
dependency order.

The following exceptions are examples of the exceptions raised because of
this:

IntegrityError: ('23000', 547, '[unixODBC][FreeTDS][SQL Server]The
DELETE statement conflicted with the REFERENCE constraint
"f_id_refs_id_52a6fc20". The conflict occurred in database
"test_django", table "dbo.delete_e", column \'f_id\'.', 7737)

IntegrityError: ('23000', 547, '[unixODBC][FreeTDS][SQL Server]The
INSERT statement conflicted with the FOREIGN KEY constraint
"FK__serialize__autho__3D5E1FD2". The conflict occurred in database
"test_django", table "dbo.serializers_author", column \'id\'.',
7737)

Some unit tests in the Django unit test suite fails due to this limitation.

51

mxODBC for Django - ODBC Interface for the Django Web Framework

 Possible work around

If you must support forward references or cyclic references in your
database schema, the only option is to define the respective columns as
NULLable, insert the rows with NULLs (None in Python) in those columns
and then set the values in a subsequent rounds of updates.

6.1.7 Limited support for regular expressions

Microsoft SQL Server 2005, 2008 and 2012 do not directly support the
usage of regular expressions.

mxODBC Django Database Engine currently emulates the most trivial
regular expression patterns using a stored function created when you create
your database tables with the first syncdb operation.

Note that the user running your application will need execute privileges for
that stored function if you use __regex or __iregex conditions in your
code or one of the Django add-ons you use.

6.1.8 Data types nvarchar() and ntext cannot be compared

MS SQL Server does not support comparing nvarchar() and ntext columns
for equality. The same is true for comparisons with other variable length
column types (ntext, text, image).

With SQL Server 2012, Microsoft has decided to deprecate these variable
size column types. See this MSDN article for details.

The Django ORM can trip over this limitation in the implementation of
generic relations.

Note that the MS SQL Server subpackage of the mxODBC Django Database
Engine does not use the above variable size column types, so you will likely
only run into this situation when interfacing to database not under Django
ORM schema control.

 Work around

You can either avoid using text, ntext and image column types in the
database schema or explicitly cast the variable size column types to limited
size column types.

52

http://msdn.microsoft.com/en-us/library/ms187993.aspx
https://docs.djangoproject.com/en/dev/ref/contrib/contenttypes/

6. Additional information

6.1.9 Aggregate function support conflicts with other database backends

In order to support the different SQL dialect used by MS SQL Server for
aggregate functions, the mxODBC Django Database Engine has to patch
the Django ORM Query class and provide a customized aggregates module
so that requests for aggregates get converted to SQL code which is
compatible with MS SQL Server.

Unfortunately, the Django ORM does not allow providing such
customizations on a per-database backend basis.

The patching of the Django ORM can be disabled, if needed, but since we
assume that most Django ORM users will use only one database backend
per application, we have enabled the patching by default.

If you want to disable patching the Django Query class, you can do so by
setting the mxodbc_monkey_patch_aggregates database option in your
settings.py file to False:

DATABASES = {
 'default': {
 'ENGINE': 'mxodbc_django.ms_sql_server',
 'NAME': 'exampledb',
 'DSN': 'DSN=sqlserver2008;UID=sa;PWD=123',
 'OPTIONS': {
 mxodbc_monkey_patch_aggregates: False,
 },
 }
}

Please note that by doing so, some aggregate functions used by the ORM
will no longer work with the MS SQL Server backend and cause tracebacks.

6.1.10 Database cache support conflicts with other database backends

For the same reason as in the previous section concerning aggregate
functions, the mxODBC Django Database Engine has to patch the Django
ORM DatabaseCache class.

The Django ORM assumes that all database backends support the
LIMIT/OFFSET SQL syntax for limiting the result set to a predefined
window. MS SQL Server does not support this syntax, which is why we had
to provide different queries for the cache implementation. We also had to
make sure that the ORM only uses non-aware timestamps for the caching.

Unfortunately, the Django ORM does not allow providing such
customizations on a per-database backend basis.

53

mxODBC for Django - ODBC Interface for the Django Web Framework

The patching of the Django ORM can be disabled, if needed, but since we
assume that most Django ORM users will use only one database backend
per application, we have enabled the patching by default.

If you want to disable patching the Django DatabaseCache class, e.g.
because you want to use a different database backend as database cache,
you can do so by setting the mxodbc_monkey_patch_database_cache
database option in your settings.py file to False:

DATABASES = {
 'default': {
 'ENGINE': 'mxodbc_django.ms_sql_server',
 'NAME': 'exampledb',
 'DSN': 'DSN=sqlserver2008;UID=sa;PWD=123',
 'OPTIONS': {
 mxodbc_monkey_patch_database_cache: False,
 },
 }
}

Note that the MS SQL Server backend is not usable as database cache in
Django when disabling the patch.

6.2 Tips and tricks

6.2.1 How do I determine the correct collation values?

Please consult to the manual of your database server for the list of valid
collation names. You can find more information on the Microsoft SQL Server
MSDN Web site.

You can list all the collations supported by Microsoft SQL Server using the
SQL Server Management Studio GUI administration tool. The complete list
is shown when starting the Create Database wizard under the Options tab.

The SQL Server Management Studio will also show you the currently set
database default collation in the database properties.

6.2.2 How do I implement full regular expression search?

MS SQL Server does not have native support for regular expression, so the
only option you have is to work around this by filtering the records using
the Python re module.

54

http://msdn.microsoft.com/en-us/library/aa258233.aspx
http://msdn.microsoft.com/en-us/library/aa258233.aspx
http://www.python.org/doc/lib/module-re.html

6. Additional information

6.3 Troubleshooting

6.3.1 Django does not find the database backend

Please make sure you installed mxODBC Django Database Engine into the
same Python instance as your Django based application uses.

Try to open the command line interpreter of the same Python instance and
import the subpackage from mxODBC Django Database Engine manually
with a single import statement and watch for an ImportError.

Make sure you did not mistype the name of the mxODBC Django Database
Engine subpackage and that you entered its full (dotted) module name, not
just the name of the subpackage. See the example settings above.

6.3.2 I'm getting an error about missing mxODBC license or the license has
expired

Please make sure you have a valid mxODBC license installed.

Please visit the eGenix.com web-site to obtain a license.

6.3.3 Django cannot connect to the database

Please make sure

• you configured the ODBC data source correctly (please check the
mxODBC User Manual for details)

• you specified the name of the database, host and port in your
ODBC data source definition (please see your ODBC driver's
documentation for details)

• you used the correct data source name in the DSN engine setting
(DSN=<data source name>)

• you defined the user name and password correctly in the DSN
engine setting (UID=<username>;PWD=<password>)

• your database server is up and running and accepts incoming
connections (the type of the connection and the address should

55

http://www.egenix.com/

mxODBC for Django - ODBC Interface for the Django Web Framework

match the values you entered into the ODBC Manager when you
defined your DSN)

• all firewalls between the Django server and the database server
permit traffic on the required ports in both directions

In order to debug the problem, please

• review the Django logs for hints

• enable ODBC manager logging and check the ODBC manager logs
for hints

• review the logs of the database server for details, enable logging if
required, please consult your database server's documentation for
details

56

7. Support

7. Support

eGenix.com is providing commercial support for this package, including
adapting it to special needs for use in customer projects. If you are
interested in receiving information about this service please see the
eGenix.com Support Conditions.

57

http://www.egenix.com/files/python/eGenix-mx-Extensions.html

mxODBC for Django - ODBC Interface for the Django Web Framework

8. Copyright & License

© 1997-2000, Copyright by IKDS Marc-André Lemburg; All Rights
Reserved. mailto: mal@lemburg.com

© 2000-2013, Copyright by eGenix.com Software GmbH, Langenfeld,
Germany; All Rights Reserved. mailto: info@egenix.com

This software is covered by the eGenix.com Commercial License
Agreement, which is included in the following section. The text of the
license is also included as file "LICENSE" in the package's main directory.

Please note that using this software in a commercial environment is not
free of charge. You may use the software during an evaluation period as
specified in the license, but subsequent use requires the ownership of a
"Proof of Authorization" which you can buy online from eGenix.com.

Please see the eGenix.com mx Extensions Page for details about the license
ordering process.

By downloading, copying, installing or otherwise using the software, you
agree to be bound by the terms and conditions of the following eGenix.com
Commercial License Agreement.

58

mailto:mal@lemburg.com
mailto:info@egenix.com
http://www.egenix.com/
http://www.egenix.com/files/python/eGenix-mx-Extensions.html

8. Copyright & License

EGENIX.COM COMMERCIAL LICENSE AGREEMENT

Version 1.2.0

1. Introduction

This “License Agreement” is between eGenix.com Software, Skills and
Services GmbH (“eGenix.com”), having an office at Pastor-Loeh-Str. 48, D-
40764 Langenfeld, Germany, and the Individual or Organization
(“Licensee”) accessing and otherwise using this software in source or
binary form and its associated documentation (“the Software”).

2. Terms and Definitions

The “Software” covered under this License Agreement includes without
limitation, all object code, source code, help files, publications,
documentation and other programs, products or tools that are included in
the official “Software Distribution” available from eGenix.com.

The “Proof of Authorization” for the Software is a written and signed notice
from eGenix.com providing evidence of the extent of authorizations the
Licensee has acquired to use the Software and of Licensee’s eligibility for
future upgrade program prices (if announced) and potential special or
promotional opportunities. As such, the Proof of Authorization becomes
part of this License Agreement.

Installation of the Software (“Installation”) refers to the process of
unpacking or copying the files included in the Software Distribution to an
Installation Target.

“Installation Target” refers to the target of an installation operation. Targets
are defined as follows:

1) “CPU” refers to a central processing unit which is able to store
and/or execute the Software (a server, personal computer, or other
computer-like device) using at most two (2) processors,

2) “Site” refers to a single site of a company,
3) “Corporate” refers to an unlimited number of sites of the company,
4) “Developer CPU” refers to a single CPU used by at most one (1)

developer.

When installing the Software on a server CPU for use by other CPUs in a
network, Licensee must obtain a License for the server CPU and for all
client CPUs attached to the network which will make use of the Software
by copying the Software in binary or source form from the server into their

59

mxODBC for Django - ODBC Interface for the Django Web Framework

CPU memory. If a CPU makes use of more than two (2) processors,
Licensee must obtain additional CPU licenses to cover the total number of
installed processors. Likewise, if a Developer CPU is used by more than
one developer, Licensee must obtain additional Developer CPU licenses to
cover the total number of developers using the CPU.

“Commercial Environment” refers to any application environment which is
aimed at directly or indirectly generating profit. This includes, without
limitation, for-profit organizations, private educational institutions, work as
independent contractor, consultant and other profit generating relationships
with organizations or individuals. Governments and related agencies or
organizations are also regarded as being Commercial Environments.

“Non-Commercial Environments” are all those application environments
which do not directly or indirectly generate profit. Public educational
institutions and officially acknowledged private non-profit organizations are
regarded as being Non-Commercial Environments in the aforementioned
sense.

“Educational Environments“ are all those application environments which
directly aim at educating children, pupils or students. This includes, without
limitation, class room installations and student server installations which
are intended to be used by students for educational purposes. Installations
aimed at administrational or organizational purposes are not regarded as
Educational Environment.

3. License Grant

Subject to the terms and conditions of this License Agreement, eGenix.com
hereby grants Licensee a non-exclusive, world-wide license to

1) use the Software to the extent of authorizations Licensee has
acquired and

2) distribute, make and install copies to support the level of use
authorized, providing Licensee reproduces this License Agreement
and any other legends of ownership on each copy, or partial copy, of
the Software.

If Licensee acquires this Software as a program upgrade, Licensee’s
authorization to use the Software from which Licensee upgraded is
terminated.

Licensee will ensure that anyone who uses the Software does so only in
compliance with the terms of this License Agreement.

Licensee may not

1) use, copy, install, compile, modify, or distribute the Software except

60

8. Copyright & License

as provided in this License Agreement;
2) reverse assemble, reverse engineer, reverse compile, or otherwise

translate the Software except as specifically permitted by law without
the possibility of contractual waiver; or

3) rent, sublicense or lease the Software.

4. Authorizations

The extent of authorization depends on the ownership of a Proof of
Authorization for the Software.

Usage of the Software for any other purpose not explicitly covered by this
License Agreement or granted by the Proof of Authorization is not
permitted and requires the written prior permission from eGenix.com.

5. Modifications

Software modifications may only be distributed in form of patches to the
original files contained in the Software Distribution.

The patches must be accompanied by a legend of origin and ownership and
a visible message stating that the patches are not original Software
delivered by eGenix.com, nor that eGenix.com can be held liable for
possible damages related directly or indirectly to the patches if they are
applied to the Software.

6. Experimental Code or Features

The Software may include components containing experimental code or
features which may be modified substantially before becoming generally
available.

These experimental components or features may not be at the level of
performance or compatibility of generally available eGenix.com products.
eGenix.com does not guarantee that any of the experimental components
or features contained in the eGenix.com will ever be made generally
available.

7. Expiration and License Control Devices

Components of the Software may contain disabling or license control
devices that will prevent them from being used after the expiration of a
period of time or on Installation Targets for which no license was obtained.

61

mxODBC for Django - ODBC Interface for the Django Web Framework

Licensee will not tamper with these disabling devices or the components.
Licensee will take precautions to avoid any loss of data that might result
when the components can no longer be used.

8. NO WARRANTY

eGenix.com is making the Software available to Licensee on an “AS IS”
basis. SUBJECT TO ANY STATUTORY WARRANTIES WHICH CAN NOT BE
EXCLUDED, EGENIX.COM MAKES NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, EGENIX.COM MAKES NO AND DISCLAIMS ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE
WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

9. LIMITATION OF LIABILITY

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO
EVENT SHALL EGENIX.COM BE LIABLE TO LICENSEE OR ANY OTHER
USERS OF THE SOFTWARE FOR (I) ANY INCIDENTAL, SPECIAL, OR
CONSEQUENTIAL DAMAGES OR LOSS (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER
PECUNIARY LOSS) AS A RESULT OF USING, MODIFYING OR
DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF; OR (II) ANY AMOUNTS IN
EXCESS OF THE AGGREGATE AMOUNTS PAID TO EGENIX.COM UNDER
THIS LICENSE AGREEMENT DURING THE TWELVE (12) MONTH PERIOD
PRECEEDING THE DATE THE CAUSE OF ACTION AROSE.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE
ABOVE EXCLUSION OR LIMITATION MAY NOT APPLY TO LICENSEE.

10. Termination

This License Agreement will automatically terminate upon a material breach
of its terms and conditions if not cured within thirty (30) days of written
notice by eGenix.com. Upon termination, Licensee shall discontinue use
and remove all installed copies of the Software.

62

8. Copyright & License

11. Indemnification

Licensee hereby agrees to indemnify eGenix.com against and hold harmless
eGenix.com from any claims, lawsuits or other losses that arise out of
Licensee’s breach of any provision of this License Agreement.

12. Third Party Rights

Any software or documentation in source or binary form provided along
with the Software that is associated with a separate license agreement is
licensed to Licensee under the terms of that license agreement. This License
Agreement does not apply to those portions of the Software. Copies of the
third party licenses are included in the Software Distribution.

13. High Risk Activities

The Software is not fault-tolerant and is not designed, manufactured or
intended for use or resale as on-line control equipment in hazardous
environments requiring fail-safe performance, such as in the operation of
nuclear facilities, aircraft navigation or communication systems, air traffic
control, direct life support machines, or weapons systems, in which the
failure of the Software, or any software, tool, process, or service that was
developed using the Software, could lead directly to death, personal injury,
or severe physical or environmental damage (“High Risk Activities”).

Accordingly, eGenix.com specifically disclaims any express or implied
warranty of fitness for High Risk Activities.

Licensee agree that eGenix.com will not be liable for any claims or damages
arising from the use of the Software, or any software, tool, process, or
service that was developed using the Software, in such applications.

14. General

Nothing in this License Agreement affects any statutory rights of consumers
that cannot be waived or limited by contract.

Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between eGenix.com
and Licensee.

If any provision of this License Agreement shall be unlawful, void, or for any
reason unenforceable, such provision shall be modified to the extent
necessary to render it enforceable without losing its intent, or, if no such
modification is possible, be severed from this License Agreement and shall

63

mxODBC for Django - ODBC Interface for the Django Web Framework

not affect the validity and enforceability of the remaining provisions of this
License Agreement.

This License Agreement shall be governed by and interpreted in all respects
by the law of Germany, excluding conflict of law provisions. It shall not be
governed by the United Nations Convention on Contracts for International
Sale of Goods.

This License Agreement does not grant permission to use eGenix.com
trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party.

The controlling language of this License Agreement is English. If Licensee
has received a translation into another language, it has been provided for
Licensee’s convenience only.

15. Agreement

By downloading, copying, installing or otherwise using the Software,
Licensee agrees to be bound by the terms and conditions of this License
Agreement.

For question regarding this License Agreement, please write to:

eGenix.com Software, Skills and Services GmbH

Pastor-Loeh-Str. 48

D-40764 Langenfeld

Germany

64

8. Copyright & License

EGENIX.COM PROOF OF AUTHORIZATION

1 CPU License (Example)

This is an example of a "Proof of Authorization" for a 1 CPU License. These
proofs are either wet-signed by the eGenix.com staff or digitally PGP-signed
using an official eGenix.com PGP-key.

1. License Grant

eGenix.com Software, Skills and Services GmbH (“eGenix.com”), having an
office at Pastor-Loeh-Str. 48, D-40764 Langenfeld, Germany, hereby grants
the Individual or Organization (“Licensee”)

Licensee: <name of the licensee>

a non-exclusive, world-wide license to use the software listed below in
source or binary form and its associated documentation (“the Software”)
under the terms and conditions of this License Agreement and to the
extent authorized by this Proof of Authorization.

2. Covered Software

Software Name: <product name>

Software Version: <product version>

 (including all patch level releases)

Software Distribution: As officially made available by

 eGenix.com on http://www.egenix.com/

Operating System: any compatible operating system

3. Authorizations

eGenix.com hereby authorizes Licensee to copy, install, compile, modify
and use the Software on the following Installation Targets under the terms
of this License Agreement.

Installation Targets: one (1) CPU

65

http://www.egenix.com/

mxODBC for Django - ODBC Interface for the Django Web Framework

Use of the Software for any other purpose or redistribution IS NOT
PERMITTED BY THIS PROOF OF AUTHORIZATION.

4. Proof

This Proof of Authorization was issued by

<name>, <title>

Langenfeld, <date>

Proof of Authorization Key:

<license key>

66

8. Copyright & License

EGENIX.COM PROOF OF AUTHORIZATION

1 Developer CPU License (Example)

This is an example of a "Proof of Authorization" for a 1 Developer CPU
License. These proofs are either wet-signed by the eGenix.com staff or
digitally PGP-signed using an official eGenix.com PGP-key.

5. License Grant

eGenix.com Software, Skills and Services GmbH (“eGenix.com”), having an
office at Pastor-Loeh-Str. 48, D-40764 Langenfeld, Germany, hereby grants
the Individual or Organization (“Licensee”)

Licensee: <name of the licensee>

a non-exclusive, world-wide license to use the software listed below in
source or binary form and its associated documentation (“the Software”)
under the terms and conditions of this License Agreement and to the extent
authorized by this Proof of Authorization.

6. Covered Software

Software Name: <product name>

Software Version: <product version>

 (including all patch level releases)

Software Distribution: As officially made available by

 eGenix.com on http://www.egenix.com/

Operating System: any compatible operating system

7. Authorizations

7.1 Application Development

eGenix.com hereby authorizes Licensee to copy, install, compile, modify
and use the Software on the following Developer Installation Targets for the
purpose of developing products using the Software as integral part.

67

http://www.egenix.com/

mxODBC for Django - ODBC Interface for the Django Web Framework

Developer Installation Targets: one (1) Developer
CPU

7.2 Redistribution

eGenix.com hereby authorizes Licensee to redistribute the Software
bundled with a product developed by Licensee on the Developer
Installation Targets ("the Product") subject to the terms and conditions of
this License Agreement for installation and use in combination with the
Product on the following Redistribution Installation Targets, provided that:

1. Licensee shall not and shall not permit or assist any third party to
sell or distribute the Software as a separate product;

2. Licensee shall not and shall not permit any third party to

i. market, sell or distribute the Software to any end user
except subject to the terms and conditions of this License
Agreement,

ii. rent, sell, lease or otherwise transfer the Software or any
part thereof or use it for the benefit of any third party,

iii. use the Software outside the Product or for any other
purpose not expressly licensed hereunder;

3. the Product does not provide functions or capabilities similar to
those of the Software itself, i.e. the Product does not introduce
commercial competition for the Software as sold by eGenix.com;

4. Licensee has obtained Developer CPU Licenses for all developers
and CPUs used in developing the Product.

Redistribution Installation Targets:

any number of CPUs capable of running the Product and the Software

8. Proof

This Proof of Authorization was issued by

<name>, <title>

Langenfeld, <date>

68

8. Copyright & License

69

Proof of Authorization Key:

<license key>

	Introduction
	Features
	
	MS SQL Server Features
	Direct mxODBC Interface to other Databases

	Django ORM Integration
	Supported Django Versions
	Requirements
	
	Windows
	Unix
	Mac OS X

	Installation
	Windows Installation
	Installation managed by Windows
	Installation managed by Python

	Unix / Mac OS X Installation
	Download the Software
	Automatic download
	easy_install and zc.buildout (setuptools/distribute-based)
	pip

	Manual download
	Choosing the right file to download

	Installation using zc.buildout
	Before You Start
	Upgrading
	License Files

	Step-by-step Installation Guide
	Step 1
	Step 2
	Step 3
	Step 4

	Installation using easy_install
	Before You Start
	Upgrading
	License Files

	Step-by-step Installation Guide
	Step 1
	Step 2
	Step 3

	Installation using pip
	Before You Start
	Upgrading
	License Files

	Step-by-step Installation Guide
	Step 1
	Step 2
	Step 3
	Step 4

	Uninstall

	Installation using Windows MSI Installer
	Before You Start
	Upgrading
	License Files

	Step-by-step Installation Guide
	Step 1
	Step 2
	Step 3
	Step 4

	Uninstall

	Configuration
	ODBC Data Source Configuration
	General Notes
	Connection Pooling by the ODBC Manager

	Windows Platform
	Platform Default ODBC Manager

	Unix Platform
	Platform Default ODBC Manager

	Mac OS X Platform
	Platform Default ODBC Manager

	ODBC Driver/Manager Troubleshooting
	Windows ODBC Manager
	Unix ODBC Managers iODBC, unixODBC and DataDirect
	Microsoft Access ODBC Driver
	IBM DB2 ODBC Driver
	SAP DB ODBC Driver
	FreeTDS ODBC Driver (access MS SQL Server from Linux)
	MS SQL Server Native Client for Linux
	PostgreSQL ODBC Driver
	Other ODBC Drivers and Manager Setups

	Setting up your Django application
	Configuring database access
	Database settings
	Database backend options

	Using the mxODBC Django Database Engine
	Using the Django ORM with mxODBC
	MS SQL Server as database backend for the Django ORM
	Database Permissions
	Date/Time Fields
	Limitations

	Working with databases which are not supported by the ORM

	Direct mxODBC Database Interfacing
	mxODBC Python API
	Importing mxODBC into your Django application
	Example of using the mxODBC Database Interface in Django
	Transaction Management
	Default transaction mode is manual commit
	Enabling Auto-Commit

	Additional information
	Known problems and limitations of the MS SQL Server subpackage
	mxODBC Django Database Engine currently only supports Microsoft SQL Server
	Django timezone support doesn't work well with MS SQL Server
	Avoid using USE_TZ
	Avoid date/time string literals and implicit datetime to string conversion

	Limited MS SQL Server datetime precision
	Unwanted Rounding
	Avoid mixed-date/time field type comparisons/filtering

	Min() / Max() and DateField() / TimeField()
	Character encoding related problems
	Deferred constraint checking is not supported on MS SQL
	Possible work around

	Limited support for regular expressions
	Data types nvarchar() and ntext cannot be compared
	Work around

	Aggregate function support conflicts with other database backends
	Database cache support conflicts with other database backends

	Tips and tricks
	How do I determine the correct collation values?
	How do I implement full regular expression search?

	Troubleshooting
	Django does not find the database backend
	I'm getting an error about missing mxODBC license or the license has expired
	Django cannot connect to the database

	Support
	Copyright & License

